Predictive modelling of transport decisions and resources optimisation in pre-hospital setting using machine learning techniques

Hassan Farhat, Ahmed Makhlouf, Padarath Gangaram, Kawther El Aifa, Ian Howland, Fatma Babay Ep Rekik, Cyrine Abid, Mohamed Chaker Khenissi, Nicholas Castle, Loua Al-Shaikh, Moncef Khadhraoui, Imed Gargouri, James Laughton, Guillaume Alinier

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The global evolution of pre-hospital care systems faces dynamic challenges, particularly in multinational settings. Machine learning (ML) techniques enable the exploration of deeply embedded data patterns for improved patient care and resource optimisation. This study’s objective was to accurately predict cases that necessitated transportation versus those that did not, using ML techniques, thereby facilitating efficient resource allocation. Methods: ML algorithms were utilised to predict patient transport decisions in a Middle Eastern national pre-hospital emergency medical care provider. A comprehensive dataset comprising 93,712 emergency calls from the 999-call centre was analysed using R programming language. Demographic and clinical variables were incorporated to enhance predictive accuracy. Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost) algorithms were trained and validated. Results: All the trained algorithm models, particularly XGBoost (Accuracy = 83.1%), correctly predicted patients’ transportation decisions. Further, they indicated statistically significant patterns that could be leveraged for targeted resource deployment. Moreover, the specificity rates were high; 97.96% in RF and 95.39% in XGBoost, minimising the incidence of incorrectly identified “Transported” cases (False Positive). Conclusion: The study identified the transformative potential of ML algorithms in enhancing the quality of pre-hospital care in Qatar. The high predictive accuracy of the employed models suggested actionable avenues for day and time-specific resource planning and patient triaging, thereby having potential to contribute to pre-hospital quality, safety, and value improvement. These findings pave the way for more nuanced, data-driven quality improvement interventions with significant implications for future operational strategies.
Original languageEnglish
Article number0301472
Pages (from-to)1-17
Number of pages17
JournalPLoS ONE
Volume19
Issue number5
Early online date3 May 2024
DOIs
Publication statusE-pub ahead of print - 3 May 2024

Keywords

  • Adolescent
  • Adult
  • Aged
  • Algorithms
  • Emergency Medical Services
  • Female
  • Humans
  • Machine Learning
  • Male
  • Middle Aged
  • Support Vector Machine
  • Transportation of Patients/methods
  • Young Adult

Fingerprint

Dive into the research topics of 'Predictive modelling of transport decisions and resources optimisation in pre-hospital setting using machine learning techniques'. Together they form a unique fingerprint.

Cite this