Proposed evolutionary changes in the role of myelin

Klaus M Stiefel, Ben Torben-Nielsen, Jay S Coggan

    Research output: Contribution to journalArticlepeer-review

    14 Citations (Scopus)
    42 Downloads (Pure)

    Abstract

    Myelin is the multi-layered lipid sheet periodically wrapped around neuronal axons. It is most frequently found in vertebrates. Myelin allows for saltatory action potential (AP) conduction along axons. During this form of conduction, the AP travels passively along the myelin-covered part of the axon, and is recharged at the intermittent nodes of Ranvier. Thus, myelin can reduce the energy load needed and/or increase the speed of AP conduction. Myelin first evolved during the Ordovician period. We hypothesize that myelin's first role was mainly energy conservation. During the later "Mesozoic marine revolution," marine ecosystems changed toward an increase in marine predation pressure. We hypothesize that the main purpose of myelin changed from energy conservation to conduction speed increase during this Mesozoic marine revolution. To test this hypothesis, we optimized models of myelinated axons for a combination of AP conduction velocity and energy efficiency. We demonstrate that there is a trade-off between these objectives. We then compared the simulation results to empirical data and conclude that while the data are consistent with the theory, additional measurements are necessary for a complete evaluation of the proposed hypothesis.

    Original languageEnglish
    Article number202
    Number of pages9
    JournalFrontiers in Neuroscience
    Volume7
    DOIs
    Publication statusPublished - 2013

    Fingerprint

    Dive into the research topics of 'Proposed evolutionary changes in the role of myelin'. Together they form a unique fingerprint.

    Cite this