Abstract
This paper explores the application of the inner element subgrid scale method to the Boltzmann transport equation using quadratic basis functions. Previously, only linear basis functions for both the coarse scale and the fine scale were considered. This paper, therefore, analyses the advantages of using different coarse and subgrid basis functions for increasing the accuracy of the subgrid scale method. The transport of neutral particle radiation may be described by the Boltzmann transport equation (BTE) which, due to its 7 dimensional phase space, is computationally expensive to resolve. Multi-scale methods offer an approach to efficiently resolve the spatial dimensions of the BTE by separating the solution into its coarse and fine scales and formulating a solution whereby only the computationally efficient coarse scales need to be solved. In previous work an inner element subgrid scale method was developed that applied a linear continuous and discontinuous finite element method to represent the solution's coarse and fine scale components. This approach was shown to generate efficient and stable solutions, and so this article continues its development by formulating higher order quadratic finite element expansions over the continuous and discontinuous scales. Here it is shown that a solution's convergence can be improved significantly using higher order basis functions. Furthermore, by using linear finite elements to represent coarse scales in combination with quadratic fine scales, convergence can also be improved with only a modest increase in computational expense.
Original language | English |
---|---|
Pages (from-to) | 124-137 |
Number of pages | 14 |
Journal | Annals of Nuclear Energy |
Volume | 45 |
DOIs | |
Publication status | Published - 1 Jul 2012 |
Externally published | Yes |
Keywords
- Finite elements
- Neutron transport
- Subgrid scale