Radiative neutron capture on Pu 242 in the resonance region at the CERN n-TOF-EAR1 facility

J. Lerendegui-Marco, C. Guerrero, E. Mendoza, J. M. Quesada, K. Eberhardt, A. R. Junghans, M. Krtička, O. Aberle, J. Andrzejewski, L. Audouin, V. Bécares, M. Bacak, J. Balibrea, M. Barbagallo, S. Barros, F. Bečvář, C. Beinrucker, E. Berthoumieux, J. Billowes, D. BosnarM. Brugger, M. Caamaño, F. Calviño, M. Calviani, D. Cano-Ott, R. Cardella, A. Casanovas, D. M. Castelluccio, F. Cerutti, Y. H. Chen, E. Chiaveri, N. Colonna, G. Cortés, M. A. Cortés-Giraldo, L. Cosentino, L. A. Damone, M. Diakaki, M. Dietz, C. Domingo-Pardo, R. Dressler, E. Dupont, I. Durán, B. Fernández-Domínguez, A. Ferrari, P. Ferreira, P. Finocchiaro, V. Furman, K. Göbel, A. R. García, T. Rauscher, n-TOF Collaboration

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)
19 Downloads (Pure)

Abstract

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on Pu242 carried out at n-TOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The Pu242(n,γ) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of n-TOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.

Original languageEnglish
Article number024605
JournalPhysical Review C (nuclear physics)
Volume97
Issue number2
DOIs
Publication statusPublished - 6 Feb 2018

Fingerprint

Dive into the research topics of 'Radiative neutron capture on Pu 242 in the resonance region at the CERN n-TOF-EAR1 facility'. Together they form a unique fingerprint.

Cite this