Abstract
We present the first results from our Red Optical Planet Survey (ROPS) to search for low mass planets orbiting late type dwarfs (M5.5V - M9V) in their habitable zones (HZ). Our observations, with the red arm MIKE spectrograph (0.5 - 0.9 micron) at the 6.5 m Magellan Clay telescope at Las Campanas Observatory indicate that >= 92% of the flux lies beyond 0.7 micron. We use a novel approach that is essentially a hybrid of the simultaneous iodine and ThAr methods for determining precision radial velocities. We apply least squares deconvolution to obtain a single high S/N ratio stellar line for each spectrum and cross correlate against the simultaneously observed telluric line profile, which we derive in the same way.
Utilising the 0.62 - 0.90 micron region, we have achieved an r.m.s. precision of 10 m/s for an M5.5V spectral type star with spectral S/N ~160 on 5 minute timescales. By M8V spectral type, a precision of ~30 m/s at S/N = 25 is suggested, although more observations are needed. An assessment of our errors and scatter in the radial velocity points hints at the presence of stellar radial velocity variations. Of our sample of 7 stars, 2 show radial velocity signals at 6$\sigma$ and 10-sigma of the cross correlation uncertainties. We find that chromospheric activity (via Halpha variation) does not have an impact on our measurements and are unable to determine a relationship between the derived photospheric line profile morphology and radial velocity variations without further observations. If the signals are planetary in origin, our findings are consistent with estimates of Neptune mass planets that predict a frequency of 13 - 27% for early M dwarfs.
Our current analysis indicates the we can achieve a sensitivity that is equivalent to the amplitude induced by a 6 M_Earth planet orbiting in the habitable zone. Based on simulations, we estimate that <10 M_Earth habitable zone planets will be detected in a new stellar mass regime, with <=20 epochs of observations. Higher resolution and greater instrument stability indicate that photon limited precisions of 2 m/s are attainable on moderately rotating M dwarfs (with vsin <=5 km/s) using our technique.
Utilising the 0.62 - 0.90 micron region, we have achieved an r.m.s. precision of 10 m/s for an M5.5V spectral type star with spectral S/N ~160 on 5 minute timescales. By M8V spectral type, a precision of ~30 m/s at S/N = 25 is suggested, although more observations are needed. An assessment of our errors and scatter in the radial velocity points hints at the presence of stellar radial velocity variations. Of our sample of 7 stars, 2 show radial velocity signals at 6$\sigma$ and 10-sigma of the cross correlation uncertainties. We find that chromospheric activity (via Halpha variation) does not have an impact on our measurements and are unable to determine a relationship between the derived photospheric line profile morphology and radial velocity variations without further observations. If the signals are planetary in origin, our findings are consistent with estimates of Neptune mass planets that predict a frequency of 13 - 27% for early M dwarfs.
Our current analysis indicates the we can achieve a sensitivity that is equivalent to the amplitude induced by a 6 M_Earth planet orbiting in the habitable zone. Based on simulations, we estimate that <10 M_Earth habitable zone planets will be detected in a new stellar mass regime, with <=20 epochs of observations. Higher resolution and greater instrument stability indicate that photon limited precisions of 2 m/s are attainable on moderately rotating M dwarfs (with vsin <=5 km/s) using our technique.
Original language | English |
---|---|
Pages (from-to) | 591-604 |
Number of pages | 13 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 424 |
Issue number | 1 |
Early online date | 6 Jun 2012 |
DOIs | |
Publication status | Published - 1 Jul 2012 |