TY - JOUR
T1 - Regional modelling of Saharan dust and biomass-burning smoke. Part 1
T2 - Model description and evaluation
AU - Heinold, Bernd
AU - Tegen, Ina
AU - Schepanski, Kerstin
AU - Tesche, Matthias
AU - Esselborn, Michael
AU - Freudenthaler, Volker
AU - Gross, Silke
AU - Kandler, Konrad
AU - Knippertz, Peter
AU - Mueller, D.
AU - Schladitz, Alexander
AU - Toledano, Carlos
AU - Weinzierl, Bernadett
AU - Ansmann, Albert
AU - Althausen, Dietrich
AU - Müller, Thomas
AU - Petzold, Andreas
AU - Wiedensohler, Alfred
N1 - Published under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License
PY - 2011/9
Y1 - 2011/9
N2 - The spatio-temporal evolution of the Saharan dust and biomass-burning plume during the SAMUM-2 field campaign in January and February 2008 is simulated at 28 km horizontal resolution with the regional model-system COSMO-MUSCAT. The model performance is thoroughly tested using routine ground-based and space-borne remote sensing and local field measurements. Good agreement with the observations is found in many cases regarding transport patterns, aerosol optical thicknesses and the ratio of dust to smoke aerosol. The model also captures major features of the complex aerosol layering. Nevertheless, discrepancies in the modelled aerosol distribution occur, which are analysed in detail. The dry synoptic dynamics controlling dust uplift and transport during the dry season are well described by the model, but surface wind peaks associated with the breakdown of nocturnal low-level jets are not always reproduced. Thus, a strong dust outbreak is underestimated. While dust emission modelling is a priori more challenging, since strength and placement of dust sources depend on on-line computed winds, considerable inaccuracies also arise in observation-based estimates of biomass-burning emissions. They are caused by cloud and spatial errors of satellite fire products and uncertainties in fire emission parameters, and can lead to unrealistic model results of smoke transport. © 2011 The Authors Tellus B © 2011 John Wiley & Sons A/S.
AB - The spatio-temporal evolution of the Saharan dust and biomass-burning plume during the SAMUM-2 field campaign in January and February 2008 is simulated at 28 km horizontal resolution with the regional model-system COSMO-MUSCAT. The model performance is thoroughly tested using routine ground-based and space-borne remote sensing and local field measurements. Good agreement with the observations is found in many cases regarding transport patterns, aerosol optical thicknesses and the ratio of dust to smoke aerosol. The model also captures major features of the complex aerosol layering. Nevertheless, discrepancies in the modelled aerosol distribution occur, which are analysed in detail. The dry synoptic dynamics controlling dust uplift and transport during the dry season are well described by the model, but surface wind peaks associated with the breakdown of nocturnal low-level jets are not always reproduced. Thus, a strong dust outbreak is underestimated. While dust emission modelling is a priori more challenging, since strength and placement of dust sources depend on on-line computed winds, considerable inaccuracies also arise in observation-based estimates of biomass-burning emissions. They are caused by cloud and spatial errors of satellite fire products and uncertainties in fire emission parameters, and can lead to unrealistic model results of smoke transport. © 2011 The Authors Tellus B © 2011 John Wiley & Sons A/S.
KW - SCHEME
KW - FIRE
KW - EMISSIONS
KW - TRANSPORT
KW - OPTICAL-PROPERTIES
KW - AEROSOL
KW - PARTICLES
KW - RUNGE-KUTTA METHODS
KW - SAMUM 2006
KW - MODIS
U2 - 10.1111/j.1600-0889.2011.00570.x
DO - 10.1111/j.1600-0889.2011.00570.x
M3 - Article
SN - 0280-6509
VL - 63
SP - 781
EP - 799
JO - Tellus Series B-Chemical and Physical Meteorology
JF - Tellus Series B-Chemical and Physical Meteorology
IS - 4
ER -