Reinforced snap-drift learning for proxylet selection in active computer networks

Sin Wee Lee, Dominic Palmer-Brown, Chris Roadknight

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

A new continuous learning method is applied to the problem of optimizing the selection of services in response to user requests in an active computer network simulation environment. The learning is an enhanced version of the 'snap-drift' algorithm, a hybrid form of learning that employs the complementary modes: fast, minimalist (snap) learning; and slower drift (towards the input patterns) learning, in a nonstationary environment where new patterns are continually introduced. Snap is based on Adaptive Resonance Theory, and drift on Learning Vector Quantization. The new algorithm swaps its learning style between the two modes of self-organisation when declining performance levels are received, but maintains the same learning style during episodes of improved performance. Performance updates occur at the end of each epoch. Reinforcement also occurs by maintaining successful adaptations, since learning is enabled with a probability that increases with declining performance. The method is capable of rapidly re-learning and is used in the design of a modular neural network system, Performanceguided Adaptive Resonance Theory. Simulations demonstrate the learning is stable, effective and able to discover alternative solutions in response to new performance requirements and significant changes in the stream of input patterns.

Original languageEnglish
Title of host publication2004 IEEE International Joint Conference on Neural Networks - Proceedings
Pages1545-1550
Number of pages6
DOIs
Publication statusPublished - 2004
Event2004 IEEE International Joint Conference on Neural Networks - Proceedings - Budapest, Hungary
Duration: 25 Jul 200429 Jul 2004

Publication series

NameIEEE International Conference on Neural Networks - Conference Proceedings
Volume2
ISSN (Print)1098-7576

Conference

Conference2004 IEEE International Joint Conference on Neural Networks - Proceedings
Country/TerritoryHungary
CityBudapest
Period25/07/0429/07/04

Fingerprint

Dive into the research topics of 'Reinforced snap-drift learning for proxylet selection in active computer networks'. Together they form a unique fingerprint.

Cite this