Report of RILEM TC 281-CCC: insights into factors affecting the carbonation rate of concrete with SCMs revealed from data mining and machine learning approaches

A. Vollpracht, G. J. G. Gluth, B. Rogiers, I. D. Uwanuakwa, Q. T. Phung, Y. Villagran Zaccardi, C. Thiel, H. Vanoutrive, J. M. Etcheverry, E. Gruyaert, S. Kamali-Bernard, A. Kanellopoulos, Z. Zhao, I. M. Martins, S. Rathnarajan, N. De Belie

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)
16 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Report of RILEM TC 281-CCC: insights into factors affecting the carbonation rate of concrete with SCMs revealed from data mining and machine learning approaches'. Together they form a unique fingerprint.

Keyphrases

Material Science

Engineering