@inbook{3acc2c8af6564d218ff5af170694a988,
title = "Retaining Expression on De-identified Faces",
abstract = "The extensive use of video surveillance along with advances in face recognition has ignited concerns about the privacy of the people identifiable in the recorded documents. A face de-identification algorithm, named k-Same, has been proposed by prior research and guarantees to thwart face recognition software. However, like many previous attempts in face de-identification, kSame fails to preserve the utility such as gender and expression of the original data. To overcome this, a new algorithm is proposed here to preserve data utility as well as protect privacy. In terms of utility preservation, this new algorithm is capable of preserving not only the category of the facial expression (e.g., happy or sad) but also the intensity of the expression. This new algorithm for face de-identification possesses a great potential especially with real-world images and videos as each facial expression in real life is a continuous motion consisting of images of the same expression with various degrees of intensity.",
author = "Li Meng and Aruna Shenoy",
note = "{\textcopyright} Springer International Publishing AG 2017; 19th International Conference, SPECOM 2017 ; Conference date: 12-09-2017 Through 16-09-2017",
year = "2017",
month = aug,
day = "13",
doi = "10.1007/978-3-319-66429-3",
language = "English",
isbn = "978-3-319-66428-6",
series = "Lecture Notes in Computer Science book series (LNCS, volume 10458)",
publisher = "Springer Nature Link",
pages = "651--661",
editor = "Karpov, {Alexey } and Potapova, {Rodmonga } and Mporas, {Iosif }",
booktitle = "Speech and Computer",
address = "Netherlands",
}