Abstract
This work investigates the rheology and spinning of starch and starch-loaded poly(ethylene oxide) (PEO) by pressurised gyration in order to prepare nanofibres. The spinning dope's rheological properties played a crucial role in fibre formation. Newtonian behaviour is observed in 1-20 wt% starch suspensions and non-Newtonian behaviour is found in all the PEO-starch mixtures. Pressurised gyration of the starch suspensions produced beads only but PEO-starch mixtures generated fibres. The fibre diameter of the PEO-starch samples is shown to be a function of polymer concentration and rotating speed of the gyration system. Fibre formation can only be facilitated below a certain working pressure. The concentration of starch in the PEO-starch mixtures is crucial in defining whether beaded or continuous fibres were generated and this is related to the composition of the spinning dope. FT-IR, XRD and microscopy studies indicated very good miscibility of starch and PEO in the nanofibres. The storage modulus of the PEO-starch were also studied as a function of temperature (30-150 °C) and showed interesting results but it was not possible to deduce general trends valid for the entire temperature range.
Original language | English |
---|---|
Pages (from-to) | 279-287 |
Number of pages | 9 |
Journal | Carbohydrate Polymers |
Volume | 114 |
Early online date | 15 Aug 2014 |
DOIs | |
Publication status | Published - 19 Dec 2014 |
Keywords
- Gyration
- Nanofibres
- Polymer
- Pressure
- Starch