TY - JOUR
T1 - Robust detection of quasi-periodic variability
T2 - A HAWKI mini survey of late T dwarfs
AU - Littlefair, S. P.
AU - Burningham, B.
AU - Helling, Ch
N1 - This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - We present HAWK-I J-band light curves of five late-type T dwarfs (T6.5-T7.5) with a typical duration of four hours, and investigate the evidence for quasi-periodic photometric variability on intra-night timescales. Our photometry reaches precisions in the range 7-20 mmag, after removing instrumental systematics that correlate with sky background, seeing and airmass. Based upon a Lomb-Scargle periodogram analysis, the latest object in the sample - ULAS J2321 (T7.5) - appears to show quasi-periodic variability with a period of 1.64 hours and an amplitude of 3 mmag. Given the low amplitude of variability and presence of systematics in our lightcurves, we discuss a Bayesian approach to robustly determine if quasi-periodic variability is present in a lightcurve affected by red noise. Using this approach, we conclude that the evidence for quasi-periodic variability in ULAS J2321 is not significant. As a result, we suggest that studies which identify quasi-periodic variables using the false alarm probability from a Lomb-Scargle periodogram are likely to over-estimate the number of variable objects, even if field stars are used to set a higher false alarm probability threshold. Instead we argue that a hybrid approach combining a false alarm probability cut, followed by Bayesian model selection, is necessary for robust identification of quasi-periodic variability in lightcurves with red noise.
AB - We present HAWK-I J-band light curves of five late-type T dwarfs (T6.5-T7.5) with a typical duration of four hours, and investigate the evidence for quasi-periodic photometric variability on intra-night timescales. Our photometry reaches precisions in the range 7-20 mmag, after removing instrumental systematics that correlate with sky background, seeing and airmass. Based upon a Lomb-Scargle periodogram analysis, the latest object in the sample - ULAS J2321 (T7.5) - appears to show quasi-periodic variability with a period of 1.64 hours and an amplitude of 3 mmag. Given the low amplitude of variability and presence of systematics in our lightcurves, we discuss a Bayesian approach to robustly determine if quasi-periodic variability is present in a lightcurve affected by red noise. Using this approach, we conclude that the evidence for quasi-periodic variability in ULAS J2321 is not significant. As a result, we suggest that studies which identify quasi-periodic variables using the false alarm probability from a Lomb-Scargle periodogram are likely to over-estimate the number of variable objects, even if field stars are used to set a higher false alarm probability threshold. Instead we argue that a hybrid approach combining a false alarm probability cut, followed by Bayesian model selection, is necessary for robust identification of quasi-periodic variability in lightcurves with red noise.
KW - brown dwarfs
U2 - 10.1093/mnras/stw3376
DO - 10.1093/mnras/stw3376
M3 - Article
SN - 1365-2966
VL - 466
SP - 4250
EP - 4258
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -