SDN-enabled MIMO Heterogeneous Cooperative Networks with Flexible Cell Association

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
69 Downloads (Pure)


Small-cell densification is a strategy enabling the offloading of users from macro base stations (MBSs), in order to alleviate their load and increase the coverage, especially, for cell-edge users. In parallel, as the network increases in density, the BS cooperation emerges as an efficient design method towards the demands for drastic improvement of the system performance against the detrimental overall interference. We, therefore, model and scrutinize a heterogeneous network (HetNet) of two tiers (macro and small cells) with multiple-antenna BSs serving a multitude of users, which differ with respect to their basic design parameters, e.g., the deployment density, the number of transmit antennas, and transmit power. In addition, the tiers are enhanced with cell association policies by introducing the concept of the association probability. Above this and motivated by the advantages of cooperation among BSs, the small base stations (SBSs) are enriched with this property in their design. The SBS cooperation allows shedding light into its impact on the cell selection rules in multi-antenna HetNets. Under these settings, software-defined networking (SDN) is introduced smoothly to play the leading role in the orchestration of the network. In particular, heavy operations such as the coordination and the cell association are undertaken by virtue of an SDN controller performing and managing efficiently the corresponding computations due to its centralized adaptability and dynamicity towards the enhancement and potential scalability of the network. In this context, we derive the coverage probability and the mean achievable rate. Not only we show the outperformance of BS cooperation over uncoordinated BSs, but we also demonstrate that the SBS cooperation enables the admittance of more users from the macro-cell BSs (MBSs). Furthermore, we show that by increasing the number of BS antennas, the system performance is improved as the metrics under study reveal. Moreover, we investigate the performance of different transmission techniques, and we identify the optimal bias in each case when SBSs cooperate. Finally, we depict that the SBS densification is beneficial until a specific density value since a further increase does not increase the coverage probability.

Original languageEnglish
Article number8637958
Pages (from-to)2037-2050
Number of pages14
JournalIEEE Transactions on Wireless Communications
Issue number4
Early online date8 Feb 2019
Publication statusPublished - 1 Apr 2019


  • Multi-antenna heterogeneous networks
  • offloading
  • small-cell cooperation
  • software-defined networking
  • stochastic geometry


Dive into the research topics of 'SDN-enabled MIMO Heterogeneous Cooperative Networks with Flexible Cell Association'. Together they form a unique fingerprint.

Cite this