TY - JOUR
T1 - Search for Nearby Earth Analogs. II. detection of five new planets, eight planet candidates, and confirmation of three planets around nine nearby M dwarfs
AU - Feng, Fabo
AU - Butler, R. Paul
AU - Shectman, Stephen A.
AU - Crane, Jeffrey D.
AU - Vogt, Steve
AU - Chambers, John
AU - Jones, Hugh R. A.
AU - Wang, Sharon Xuesong
AU - Teske, Johanna K.
AU - Burt, Jenn
AU - Diaz, Matias R.
AU - Thompson, Ian B.
N1 - © 2020 The American Astronomical Society. This is an author-created, un-copyedited version of an article accepted for publication in Astrophysical Journal Supplement Series. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher authenticated version is available online at https://doi.org/10.3847/1538-4365/ab5e7c.
PY - 2020/1/8
Y1 - 2020/1/8
N2 - Zechmeister et al. surveyed 38 nearby M dwarfs from 2000 to 2007 March with VLT2 and the Ultraviolet and Visual Echelle Spectrograph (UVES) spectrometer. These data have recently been reanalyzed, yielding a significant improvement in the Doppler velocity precision. Spurred by this, we have combined the UVES data with velocity sets from High Accuracy Radial velocity Planet Searcher, Magellan/Planet Finder Spectrograph, and Keck/High Resolution Echelle Spectrometer. Sixteen planet candidates have been uncovered orbiting nine M dwarfs. Five of them are new planets corresponding to radial velocity signals, which are not sensitive to the choice of noise models and are identified in multiple data sets over various time spans. Eight candidate planets require additional observation to be confirmed. We also confirm three previously reported planets. Among the new planets, GJ 180 d and GJ 229A c are super-Earths located in the conservative habitable zones of their host stars. We investigate their dynamical stability using the Monte Carlo approach and find both planetary orbits are robust to the gravitational perturbations of the companion planets. Due to their proximity to the Sun, the angular separation between the host stars and the potentially habitable planets in these two systems is 25 and 59 mas, respectively. They are thus good candidates for future direct imaging by James Webb Space Telescope and E-ELT. In addition, we find GJ 433 c, a cold super-Neptune belonging to an unexplored population of Neptune-like planets. With a separation of 0.″5 from its host star, GJ 433 c is probably the first realistic candidate for the direct imaging of cold Neptunes. A comprehensive survey of these planets is important for the studies of planet formation.
AB - Zechmeister et al. surveyed 38 nearby M dwarfs from 2000 to 2007 March with VLT2 and the Ultraviolet and Visual Echelle Spectrograph (UVES) spectrometer. These data have recently been reanalyzed, yielding a significant improvement in the Doppler velocity precision. Spurred by this, we have combined the UVES data with velocity sets from High Accuracy Radial velocity Planet Searcher, Magellan/Planet Finder Spectrograph, and Keck/High Resolution Echelle Spectrometer. Sixteen planet candidates have been uncovered orbiting nine M dwarfs. Five of them are new planets corresponding to radial velocity signals, which are not sensitive to the choice of noise models and are identified in multiple data sets over various time spans. Eight candidate planets require additional observation to be confirmed. We also confirm three previously reported planets. Among the new planets, GJ 180 d and GJ 229A c are super-Earths located in the conservative habitable zones of their host stars. We investigate their dynamical stability using the Monte Carlo approach and find both planetary orbits are robust to the gravitational perturbations of the companion planets. Due to their proximity to the Sun, the angular separation between the host stars and the potentially habitable planets in these two systems is 25 and 59 mas, respectively. They are thus good candidates for future direct imaging by James Webb Space Telescope and E-ELT. In addition, we find GJ 433 c, a cold super-Neptune belonging to an unexplored population of Neptune-like planets. With a separation of 0.″5 from its host star, GJ 433 c is probably the first realistic candidate for the direct imaging of cold Neptunes. A comprehensive survey of these planets is important for the studies of planet formation.
UR - http://www.scopus.com/inward/record.url?scp=85083222234&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/ab5e7c
DO - 10.3847/1538-4365/ab5e7c
M3 - Article
SN - 0067-0049
VL - 246
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 1
M1 - 11
ER -