Simulation Based Study of Safety Stocks under Short-Term Demand Volatility in Integrated Device Manufacturing.

Funlade Sunmola, Oliver Alcalde Fernández

Research output: Chapter in Book/Report/Conference proceedingConference contribution

34 Downloads (Pure)


A problem faced by integrated device manufacturers (IDMs) relates to fluctuating demand and can be reflected in long-term demand, middle-term demand, and short-term demand fluctuations. This paper explores safety stock under short term demand fluctuations in integrated device manufacturing. The manufacturing flow of integrated circuits is conceptualized into front end and back end operations with a die bank in between. Using a model of the back-end operations of integrated circuit manufacturing, simulation experiments were conducted based on three scenarios namely a production environment of low demand volatility and high capacity reliability (Scenario A), an environment with lower capacity reliability than scenario A (Scenario B), and an environment of high demand volatility and low capacity reliability (Scenario C). Results show trade-off relation between inventory levels and delivery performance with varied degree of severity between the different scenarios studied. Generally, higher safety stock levels are required to achieve competitive delivery performance as uncertainty in demand increases and manufacturing capability reliability decreases. Back-end cycle time are also found to have detrimental impact on delivery performance as the cycle time increases. It is suggested that success of finished goods safety stock policy relies significantly on having appropriate capacity amongst others to support fluctuations.
Original languageEnglish
Title of host publication2nd IEOM European Conference on Industrial Engineering and Operations Management
Subtitle of host publicationParis, France, July 26-27.
Publication statusPublished - 26 Jul 2018


Dive into the research topics of 'Simulation Based Study of Safety Stocks under Short-Term Demand Volatility in Integrated Device Manufacturing.'. Together they form a unique fingerprint.

Cite this