TY - JOUR
T1 - Spontaneous Reperfusion in STEMI: its mechanisms and possible modulation
AU - Leader, Joshua
AU - Kanji, Rahim
AU - Gorog, Diana
N1 - © 2024 The Author(s). This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives CC BY-NC-ND licence, https://creativecommons.org/licenses/by-nc-nd/4.0/
PY - 2024/3/12
Y1 - 2024/3/12
N2 - Patients with transient ST-segment elevation myocardial infarction or spontaneous reperfusion, which occurs in approximately 20% of patients with ST-segment elevation myocardial infarction (STEMI), have smaller infarcts and more favorable clinical outcomes than patients without spontaneous reperfusion. Understanding the mechanisms underlying spontaneous reperfusion is therefore important since this may identify possible novel therapeutic targets to improve outcomes in patients with STEMI. In this review, we discuss some of the possible determinants of spontaneous reperfusion including pro-thrombotic profile, endogenous fibrinolytic status, lipoprotein(a) (Lp[a]), inflammatory markers, and neutrophil extracellular traps (NETs). Effective (rapid) endogenous fibrinolysis, as assessed in whole blood in vitro, using a point-of-care technique assessment of global thrombotic status, has been strongly linked to spontaneous reperfusion. Lp(a), which has a high degree of homology to plasminogen, may impair fibrinolysis through competitive inhibition of tissue plasminogen activator-mediated plasminogen activation as well as tissue plasminogen activator-mediated clot lysis and contribute to pathogenic clot properties by decreasing fibrin clot permeation. NETs appear to negatively modulate clot lysis by increasing thrombin fiber diameter and inhibiting plasmin-driven lysis of plasma clots. There are limited data that oral anticoagulation may modulate endogenous fibrinolysis but antiplatelet agents currently appear to have no impact. Phase III trials involving subcutaneous P2Y
12 or glycoprotein IIb/IIIa inhibitors, oral factor XIa inhibitors, interleukin-6 inhibitors, and apolipoprotein(a) antisense oligonucleotides in patients with cardiovascular disease are ongoing. Future studies will be needed to determine the impact of these novel antithrombotic, anti-inflammatory, and lipid-lowering therapies on endogenous fibrinolysis and spontaneous reperfusion.
AB - Patients with transient ST-segment elevation myocardial infarction or spontaneous reperfusion, which occurs in approximately 20% of patients with ST-segment elevation myocardial infarction (STEMI), have smaller infarcts and more favorable clinical outcomes than patients without spontaneous reperfusion. Understanding the mechanisms underlying spontaneous reperfusion is therefore important since this may identify possible novel therapeutic targets to improve outcomes in patients with STEMI. In this review, we discuss some of the possible determinants of spontaneous reperfusion including pro-thrombotic profile, endogenous fibrinolytic status, lipoprotein(a) (Lp[a]), inflammatory markers, and neutrophil extracellular traps (NETs). Effective (rapid) endogenous fibrinolysis, as assessed in whole blood in vitro, using a point-of-care technique assessment of global thrombotic status, has been strongly linked to spontaneous reperfusion. Lp(a), which has a high degree of homology to plasminogen, may impair fibrinolysis through competitive inhibition of tissue plasminogen activator-mediated plasminogen activation as well as tissue plasminogen activator-mediated clot lysis and contribute to pathogenic clot properties by decreasing fibrin clot permeation. NETs appear to negatively modulate clot lysis by increasing thrombin fiber diameter and inhibiting plasmin-driven lysis of plasma clots. There are limited data that oral anticoagulation may modulate endogenous fibrinolysis but antiplatelet agents currently appear to have no impact. Phase III trials involving subcutaneous P2Y
12 or glycoprotein IIb/IIIa inhibitors, oral factor XIa inhibitors, interleukin-6 inhibitors, and apolipoprotein(a) antisense oligonucleotides in patients with cardiovascular disease are ongoing. Future studies will be needed to determine the impact of these novel antithrombotic, anti-inflammatory, and lipid-lowering therapies on endogenous fibrinolysis and spontaneous reperfusion.
KW - acute coronary syndrome
KW - endogenous fibrinolysis
KW - global thrombosis test
KW - lipoprotein(a)
KW - spontaneous reperfusion
UR - http://www.scopus.com/inward/record.url?scp=85191998717&partnerID=8YFLogxK
U2 - 10.33963/v.phj.99737
DO - 10.33963/v.phj.99737
M3 - Review article
SN - 1897-4279
VL - 82
SP - 363
EP - 374
JO - Polish Heart Journal (Kardiologia Polska)
JF - Polish Heart Journal (Kardiologia Polska)
IS - 4
M1 - 99737
ER -