TY - JOUR
T1 - Star Cluster Formation in Clouds with Externally Driven Turbulence
AU - Smith, Jamie D.
AU - Dale, James E.
AU - Jaffa, Sarah E.
AU - Krause, Martin G. H.
N1 - ©The Author(s) 2022. Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - Star clusters are known to be formed in turbulent molecular clouds. How turbulence is driven in molecular clouds and what effect this has on star formation is still unclear. We compare a simulation setup with turbulent driving everywhere in a periodic box with a setup where turbulence is only driven around the outside of the box. We analyse the resulting gas distribution, kinematics, and the population of stars that are formed from the cloud. Both setups successfully produce a turbulent velocity field with a power law structure function, the externally driven cloud has a more central, monolithic, clump, while the fully driven cloud has many smaller, more dispersed, clumps. The star formation follows the cloud morphology producing large clusters, with high star forming efficiency in the externally driven simulations and sparse individual star formation with much lower star formation efficiency in the fully driven case. We conclude that the externally driven method, which resembles a Global Hierarchical Collapse (GHC) scenario, produces star clusters that more closely match with observations.
AB - Star clusters are known to be formed in turbulent molecular clouds. How turbulence is driven in molecular clouds and what effect this has on star formation is still unclear. We compare a simulation setup with turbulent driving everywhere in a periodic box with a setup where turbulence is only driven around the outside of the box. We analyse the resulting gas distribution, kinematics, and the population of stars that are formed from the cloud. Both setups successfully produce a turbulent velocity field with a power law structure function, the externally driven cloud has a more central, monolithic, clump, while the fully driven cloud has many smaller, more dispersed, clumps. The star formation follows the cloud morphology producing large clusters, with high star forming efficiency in the externally driven simulations and sparse individual star formation with much lower star formation efficiency in the fully driven case. We conclude that the externally driven method, which resembles a Global Hierarchical Collapse (GHC) scenario, produces star clusters that more closely match with observations.
KW - astro-ph.GA
U2 - 10.1093/mnras/stac2295
DO - 10.1093/mnras/stac2295
M3 - Article
SN - 0035-8711
VL - 516
SP - 4212
EP - 4219
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -