Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2

Marko Kalinić, Mire Zloh, Slavica Erić

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein-ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure-activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.

Original languageEnglish
Pages (from-to)1109-1128
JournalJournal of Computer-Aided Molecular Design
Issue number11
Early online date20 Aug 2014
Publication statusPublished - Nov 2014


Dive into the research topics of 'Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2'. Together they form a unique fingerprint.

Cite this