Structure Health Monitoring of Composites Joint Reinforce by Acoustic Emission based Smart Composite Fasteners

Wenhao Li, Yiding Liu, Zhengquan Shen, Yi Xiong, Fei Gao, Darren hughes, Jing Lin, Shijun Guo

Research output: Contribution to journalArticlepeer-review

8 Downloads (Pure)

Abstract

This paper proposed an Acoustic Emission (AE) based Smart Composite Fastener (SCF) concept for health monitoring of bonded/bolted composite single lap joints. The SCF was made of 3D-printed continuous carbon fibre reinforced thermoplastic materials with an embedded piezoelectric sensor. The SCF detected signals were found to be successfully associated with AE damage sources during the loading period. It was discovered that the adhesive crack/delamination AE sources resulted in burst-type signals with identifiable onset and end, whereas AE sources of frictional sliding between the SCF and fastener holes resulted in continuous-type signals producing broad frequency content. Furthermore, the amplitudes of the burst-type signal measured from the network of SCFs were successfully correlated with the locations of the damages. In the direction away from the damage, the amplitudes of the burst-type voltages measured from the SCF showed a decreasing trend, with 10195 mv, 9,995 mv, and 7,426 mv respectively. Generally, the research in this paper explores the correlation between the voltage signal from a damaged AE source and the SCF, providing the feasibility of using a novel SCF for health monitoring in composite joint structures.
Original languageEnglish
Article number101213
Number of pages6
JournalComposite Communication
Volume33
Early online date9 Jun 2022
DOIs
Publication statusPublished - 31 Aug 2022

Keywords

  • smart composite fastener
  • Acoustic emission
  • composite joint
  • Structural health monitoring

Fingerprint

Dive into the research topics of 'Structure Health Monitoring of Composites Joint Reinforce by Acoustic Emission based Smart Composite Fasteners'. Together they form a unique fingerprint.

Cite this