TY - JOUR
T1 - Sustainable Valorisation of Animal Manures via Thermochemical Conversion Technologies
T2 - An Inclusive Review on Recent Trends
AU - Rout, Prangya Ranjan
AU - Pandey, Daya Shankar
AU - Haynes-Parry, Macsen
AU - Briggs, Caitlin
AU - Manuel, Helmer Luís Cachicolo
AU - Umapathi, Reddicherla
AU - Mukherjee, Sanjay
AU - Panigrahi, Sagarika
AU - Goel, Mukesh
N1 - © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
PY - 2022/9/10
Y1 - 2022/9/10
N2 - Purpose: With its substantial CO2eq emissions, the agricultural sector is a significant greenhouse gas (GHG) emitter. Animal manure alone contributes 16% of the total agricultural emissions. With a rapidly increasing demand for animal-based protein, animal wastes are expected to rise if sustainable manure management practices are not implemented. Manures have the potential to be treated to generate valuable products (biofertiliser and biocrude) or feedstock for energy production. Thermochemical conversion technologies such as pyrolysis, combustion, supercritical gasification (SCWG), etc., have demonstrated their potential in manure management and valorisation. This study provides a broader overview of these technologies and envisages future manure valorisation trends. Methods: The paper presents a state-of-the-art review of manure valorisation. Characterisation of manure, modelling and optimisation of thermochemical conversion technologies along with life cycle anaalysis (LCA) are also reviewed. Results: The literature review highlighted that the thermochemical conversion technologies can generate bio-oils, syngas, H2, biofuels, heat, and biochar as carbon-free fertiliser. The reported calorific value of the produced bio-oil was in the range of 26 MJ/kg to 32 MJ/kg. However, thermochemical conversion technologies are yet to be commercialised. The major challenges associated with the scale-up of manure derived feedstocks are relatively high moisture and ash content, lower calorific value and higher concentration of impurities (N, Cl, and S). LCA studies conclude that gasification presents a sustainable option for manure valorisation as it is economical with modest environmental threats. Significance of Study: This review briefly states the current challenges faced in manure management and presents the case for a sustainable valorisation of animal manures using thermochemical technologies. The economic, environmental and societal advantages of these technologies are presented in order to promote the scientific and industrial development of the subject in the academic and research community. Conclusions: Thermochemical conversion technologies are promising for manure valorisation for energy and nutrient recovery. However, their commercialisation viability needs wide-ranging evaluations such as techno-economics, life-cycle analysis, technology take-up and identification of stakeholders. There should be clear-cut policies to support such technologies. It should be advocated amongst communities and industries, which necessitates marketing by the governments to secure a clean energy future for the planet.
AB - Purpose: With its substantial CO2eq emissions, the agricultural sector is a significant greenhouse gas (GHG) emitter. Animal manure alone contributes 16% of the total agricultural emissions. With a rapidly increasing demand for animal-based protein, animal wastes are expected to rise if sustainable manure management practices are not implemented. Manures have the potential to be treated to generate valuable products (biofertiliser and biocrude) or feedstock for energy production. Thermochemical conversion technologies such as pyrolysis, combustion, supercritical gasification (SCWG), etc., have demonstrated their potential in manure management and valorisation. This study provides a broader overview of these technologies and envisages future manure valorisation trends. Methods: The paper presents a state-of-the-art review of manure valorisation. Characterisation of manure, modelling and optimisation of thermochemical conversion technologies along with life cycle anaalysis (LCA) are also reviewed. Results: The literature review highlighted that the thermochemical conversion technologies can generate bio-oils, syngas, H2, biofuels, heat, and biochar as carbon-free fertiliser. The reported calorific value of the produced bio-oil was in the range of 26 MJ/kg to 32 MJ/kg. However, thermochemical conversion technologies are yet to be commercialised. The major challenges associated with the scale-up of manure derived feedstocks are relatively high moisture and ash content, lower calorific value and higher concentration of impurities (N, Cl, and S). LCA studies conclude that gasification presents a sustainable option for manure valorisation as it is economical with modest environmental threats. Significance of Study: This review briefly states the current challenges faced in manure management and presents the case for a sustainable valorisation of animal manures using thermochemical technologies. The economic, environmental and societal advantages of these technologies are presented in order to promote the scientific and industrial development of the subject in the academic and research community. Conclusions: Thermochemical conversion technologies are promising for manure valorisation for energy and nutrient recovery. However, their commercialisation viability needs wide-ranging evaluations such as techno-economics, life-cycle analysis, technology take-up and identification of stakeholders. There should be clear-cut policies to support such technologies. It should be advocated amongst communities and industries, which necessitates marketing by the governments to secure a clean energy future for the planet.
KW - Gasification
KW - Manure valorisation
KW - Pyrolysis
KW - Review
KW - Supercritical water gasification
KW - Thermochemical conversion technologies
UR - http://www.scopus.com/inward/record.url?scp=85137762478&partnerID=8YFLogxK
U2 - 10.1007/s12649-022-01916-5
DO - 10.1007/s12649-022-01916-5
M3 - Article
AN - SCOPUS:85137762478
SN - 1877-2641
VL - 14
SP - 553
EP - 582
JO - Waste and Biomass Valorization
JF - Waste and Biomass Valorization
IS - 2
ER -