Abstract
Two decades of effort have been poured into both single-dish and interferometric millimeter-wave surveys of the sky to infer the volume density of dusty star-forming galaxies (DSFGs, with SFR>100M⊙ yr−1) over cosmic time. Though obscured galaxies dominate cosmic star-formation near its peak at z∼2, the contribution of such heavily obscured galaxies to cosmic star-formation is unknown beyond z∼2.5 in contrast to the well-studied population of Lyman-break galaxies (LBGs) studied through deep, space- and ground-based pencil beam surveys in the near-infrared. Unlocking the volume density of DSFGs beyond z>3, particularly within the first 1 Gyr after the Big Bang is critical to resolving key open questions about early Universe galaxy formation: (1) What is the integrated star-formation rate density of the Universe in the first few Gyr and how is it distributed among low-mass galaxies (e.g. Lyman-break galaxies) and high-mass galaxies (e.g. DSFGs and quasar host galaxies)? (2) How and where do the first massive galaxies assemble? (3) What can the most extreme DSFGs teach us about the mechanisms of dust production (e.g. supernovae, AGB stars, grain growth in the ISM) <1 Gyr after the Big Bang? We summarize the types of observations needed in the next decade to address these questions.
Original language | English |
---|---|
Article number | 212 |
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | The American Astronomical Society |
Volume | 51 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 May 2019 |
Keywords
- astro-ph.GA
- astro-ph.CO