The cosmic build-up of dust and metals: Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3

K. E. Heintz, A. De Cia, C. C. Thöne, J. -K. Krogager, R. M. Yates, S. Vejlgaard, C. Konstantopoulou, J. P. U. Fynbo, D. Watson, D. Narayanan, S. N. Wilson, M. Arabsalmani, S. Campana, V. D'Elia, M. De Pasquale, D. H. Hartmann, L. Izzo, P. Jakobsson, C. Kouveliotou, A. LevanQ. Li, D. B. Malesani, A. Melandri, B. Milvang-Jensen, P. Møller, E. Palazzi, J. Palmerio, P. Petitjean, G. Pugliese, A. Rossi, A. Saccardi, R. Salvaterra, S. Savaglio, P. Schady, G. Stratta, N. R. Tanvir, A. de Ugarte Postigo, S. D. Vergani, K. Wiersema, R. A. M. J. Wijers, T. Zafar

Research output: Contribution to journalArticlepeer-review

18 Downloads (Pure)

Abstract

The chemical enrichment of dust and metals in the interstellar medium of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG) ratios, and dust-to-metal (DTM) ratios of 36 star-forming galaxies at 1.7 < z < 6.3 probed by gamma-ray bursts (GRBs). We compiled all GRB-selected galaxies with intermediate- ( = 7000) to high-resolution ( > 40 000) spectroscopic data, including three new sources, for which at least one refractory (e.g., Fe) and one volatile (e.g., S or Zn) element have been detected at S/N > 3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derived the redshift evolution of the dust-corrected, absorption-line-based gas-phase metallicity, [M/H] tot, in these galaxies, for which we determine a linear relation with redshift [M/H] tot(z) = (- 0.21 ± 0.04)z - (0.47 ± 0.14). We then examined the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction, A V, and the derived depletion level. We used a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the interstellar medium probed by the GRBs, they provide strong implications for studies of dust masses that aim to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime.

Original languageEnglish
Article numberA91
Pages (from-to)1-15
Number of pages15
JournalAstronomy & Astrophysics
Volume679
Issue numberNovember 2023
Early online date15 Nov 2023
DOIs
Publication statusPublished - 15 Nov 2023

Keywords

  • astro-ph.GA
  • astro-ph.HE
  • Dust
  • Extinction
  • Gamma-ray burst: general
  • Galaxies: ISM
  • ISM: abundances
  • Galaxies: abundances
  • Galaxies: high-redshift

Fingerprint

Dive into the research topics of 'The cosmic build-up of dust and metals: Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3'. Together they form a unique fingerprint.

Cite this