The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex

G. de Sousa, R.G. Adams, N. Davey, R. Maex, Volker Steuber

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
103 Downloads (Pure)

Abstract

Many cerebellar learning theories assume that long-term depression (LTD) of synapses between parallel fibres (PFs) and Purkinje cells (PCs) provides the basis for pattern recognition in the cerebellum. Previous work has suggested that PCs can use a novel neural code based on the duration of silent periods. These simulations have used a simplified learning rule, where the synaptic conductance was halved each time a pattern was learned. However, experimental studies in cerebellar slices show that the synaptic conductance saturates and is rarely reduced to less than 50% of its baseline value. Moreover, the previous simulations did not include plasticity of the synapses between inhibitory interneurons and PCs. Here we study the effect of LTD saturation and inhibitory synaptic plasticity on pattern recognition in a complex PC model. We find that the PC model is very sensitive to the value at which LTD saturates, but is unaffected by inhibitory synaptic plasticity.
Original languageEnglish
Pages (from-to)413-422
JournalLecture Notes in Computer Science (LNCS)
Volume5495
DOIs
Publication statusPublished - 2009

Fingerprint

Dive into the research topics of 'The Effect of Different Forms of Synaptic Plasticity on Pattern Recognition in the Cerebellar Cortex'. Together they form a unique fingerprint.

Cite this