The Herschel view of GAS in Protoplanetary Systems (GASPS) First comparisons with a large grid of models

C. Pinte, P. Woitke, F. Menard, G. Duchene, I. Kamp, G. Meeus, G. Mathews, C. D. Howard, C. A. Grady, W. -F. Thi, I. Tilling, J. -C. Augereau, W. R. F. Dent, J. M. Alacid, S. Andrews, D. R. Ardila, G. Aresu, D. Barrado, S. Brittain, D. R. CiardiW. Danchi, C. Eiroa, D. Fedele, I. de Gregorio-Monsalvo, A. Heras, N. Huelamo, A. Krivov, J. Lebreton, R. Liseau, C. Martin-Zaidi, I. Mendigutia, B. Montesinos, A. Mora, M. Morales-Calderon, H. Nomura, E. Pantin, I. Pascucci, N. Phillips, L. Podio, D. R. Poelman, S. Ramsay, B. Riaz, K. Rice, P. Riviere-Marichalar, A. Roberge, G. Sandell, E. Solano, B. Vandenbussche, H. Walker, J. P. Williams, G. J. White, G. Wright

    Research output: Contribution to journalArticlepeer-review

    23 Citations (Scopus)
    23 Downloads (Pure)

    Abstract

    The Herschel GASPS key program is a survey of the gas phase of protoplanetary discs, targeting 240 objects which cover a large range of ages, spectral types, and disc properties. To interpret this large quantity of data and initiate self-consistent analyses of the gas and dust properties of protoplanetary discs, we have combined the capabilities of the radiative transfer code MCFOST with the gas thermal balance and chemistry code ProDiMo to compute a grid of approximate to 300 000 disc models (DENT). We present a comparison of the first Herschel/GASPS line and continuum data with the predictions from the DENT grid of models. Our objective is to test some of the main trends already identified in the DENT grid, as well as to define better empirical diagnostics to estimate the total gas mass of protoplanetary discs. Photospheric UV radiation appears to be the dominant gas-heating mechanism for Herbig stars, whereas UV excess and/or X-rays emission dominates for T Tauri stars. The DENT grid reveals the complexity in the analysis of far-IR lines and the difficulty to invert these observations into physical quantities. The combination of Herschel line observations with continuum data and/or with rotational lines in the (sub-)millimetre regime, in particular CO lines, is required for a detailed characterisation of the physical and chemical properties of circumstellar discs.

    Original languageEnglish
    Article numberL126
    Pages (from-to)-
    Number of pages5
    JournalAstronomy & Astrophysics
    Volume518
    DOIs
    Publication statusPublished - 2010

    Keywords

    • astrochemistry
    • circumstellar matter
    • protoplanetary disks
    • stars: formation
    • radiative transfer
    • line: formation
    • RADIATIVE-TRANSFER
    • DISK STRUCTURE
    • MASS STARS
    • EMISSION
    • CONTINUUM
    • ACCRETION
    • EVOLUTION
    • DUST

    Fingerprint

    Dive into the research topics of 'The Herschel view of GAS in Protoplanetary Systems (GASPS) First comparisons with a large grid of models'. Together they form a unique fingerprint.

    Cite this