The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies

M-R.L. Cioni

    Research output: Contribution to journalArticlepeer-review

    84 Citations (Scopus)
    32 Downloads (Pure)


    Context. The stellar metallicity and its gradient place constraints on the formation and evolution of galaxies. Aims. This is a study of the metallicity gradient of the LMC, SMC and M33 galaxies derived from their asymptotic giant branch (AGB) stars. Methods. The [Fe/H] abundance was derived from the ratio between C- and M-type AGB stars and its variation analysed as a function of galactocentric distance. Galaxy structure parameters were adopted from the literature. Results. The metallicity of the LMC decreases linearly as −0.047±0.003 dex kpc−1 out to ∼8 kpc from the centre. In the SMC, [Fe/H] has a constant value of ∼−1.25 ± 0.01 dex up to ∼12 kpc. The gradient of the M33 disc, until ∼9 kpc, is −0.078 ± 0.003 dex kpc−1 while the outer disc/halo, out to ∼25 kpc, has [Fe/H] ∼ −1.7 dex. Conclusions. The metallicity of the LMC, as traced by different populations, bears the signature of two major star forming episodes: the first one constituting a thick disc/halo population and the second one a thin disc and bar due to a close encounter with the Milky Way and SMC. The [Fe/H] of the recent episode supports an LMC origin for the Stream. The metallicity of the SMC supports star formation, ∼3 Gyr ago, as triggered by LMC interaction and sustained by the bar in the outer region of the galaxy. The SMC [Fe/H] agrees with the present-day abundance in the Bridge and shows no significant gradient. The metallicity of M33 supports an “insideout” disc formation via accretion of metal poor gas from the interstellar medium.
    Original languageEnglish
    Pages (from-to)1137-1146
    JournalAstronomy and Astrophysics
    Issue number3
    Publication statusPublished - Nov 2009


    Dive into the research topics of 'The metallicity gradient as a tracer of history and structure: the Magellanic Clouds and M33 galaxies'. Together they form a unique fingerprint.

    Cite this