TY - JOUR
T1 - The Multiwavelength Environment of Second Bologna Catalog Sources
AU - Paggi, A.
AU - Massaro, F.
AU - Penã-Herazo, H.
AU - Missaglia, V.
AU - Jimenez-Gallardo, A.
AU - Ricci, F.
AU - Ettori, S.
AU - Giovannini, G.
AU - Govoni, F.
AU - Baldi, R. D.
AU - Mingo, B.
AU - Murgia, M.
AU - Liuzzo, E.
AU - Galati, F.
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - We present the first results of the Chandra Cool Targets (CCT) survey of the Second Bologna Catalog (B2CAT) of powerful radio sources, aimed at investigating the extended X-ray emission surrounding these sources. For the first 33 sources observed in the B2CAT CCT survey, we performed both imaging and spectral X-ray analysis, producing multiband Chandra images, and compared these images with radio observations. To evaluate the presence of extended emission in the X-rays, we extracted surface flux profiles comparing them with simulated ACIS point-spread functions. We detected X-ray nuclear emission for 28 sources. In addition, we detected eight regions of increased X-ray flux originating from radio hot spots or jet knots, and a region of decreased flux, possibly associated with an X-ray cavity. We performed X-ray spectral analysis for 15 nuclei and found intrinsic absorption significantly larger than the Galactic values in four of them. We detected significant extended X-ray emission in five sources, and fitted their spectra with thermal models with gas temperatures ∼2 keV. In the case of B2.1 0742+31, the surrounding hot gas is compatible with the intracluster medium of low-luminosity clusters of galaxies, while the X-ray diffuse emission surrounding the highly disturbed wide-angle-tailed radio galaxy B2.3 2254+35 features a luminosity similar to those of relatively bright galaxy groups, although its temperature is similar to those of low-luminosity galaxy clusters. These results highlight the power of low-frequency radio selection, combined with short Chandra snapshot observations, for investigating the properties of X-ray emission from radio sources.
AB - We present the first results of the Chandra Cool Targets (CCT) survey of the Second Bologna Catalog (B2CAT) of powerful radio sources, aimed at investigating the extended X-ray emission surrounding these sources. For the first 33 sources observed in the B2CAT CCT survey, we performed both imaging and spectral X-ray analysis, producing multiband Chandra images, and compared these images with radio observations. To evaluate the presence of extended emission in the X-rays, we extracted surface flux profiles comparing them with simulated ACIS point-spread functions. We detected X-ray nuclear emission for 28 sources. In addition, we detected eight regions of increased X-ray flux originating from radio hot spots or jet knots, and a region of decreased flux, possibly associated with an X-ray cavity. We performed X-ray spectral analysis for 15 nuclei and found intrinsic absorption significantly larger than the Galactic values in four of them. We detected significant extended X-ray emission in five sources, and fitted their spectra with thermal models with gas temperatures ∼2 keV. In the case of B2.1 0742+31, the surrounding hot gas is compatible with the intracluster medium of low-luminosity clusters of galaxies, while the X-ray diffuse emission surrounding the highly disturbed wide-angle-tailed radio galaxy B2.3 2254+35 features a luminosity similar to those of relatively bright galaxy groups, although its temperature is similar to those of low-luminosity galaxy clusters. These results highlight the power of low-frequency radio selection, combined with short Chandra snapshot observations, for investigating the properties of X-ray emission from radio sources.
UR - http://www.scopus.com/inward/record.url?scp=85171168759&partnerID=8YFLogxK
U2 - 10.3847/1538-4365/ace436
DO - 10.3847/1538-4365/ace436
M3 - Article
AN - SCOPUS:85171168759
SN - 0067-0049
VL - 268
JO - Astrophysical Journal, Supplement Series
JF - Astrophysical Journal, Supplement Series
IS - 1
M1 - 31
ER -