TY - JOUR
T1 - The Orion Protostellar Explosion and Runaway Stars Revisited
T2 - Stellar Masses, Disk Retention, and an Outflow from the Becklin-Neugebauer Object
AU - Bally, John
AU - Ginsburg, Adam
AU - Forbrich, Jan
AU - Vargas-Gonzalez, Jaime
N1 - © 2020 The American Astronomical Society. All rights reserved.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - The proper motions of the three stars ejected from Orion's OMC1 cloud core are combined with the requirement that their center of mass is gravitationally bound to OMC1 to show that radio source I (Src I) is likely to have a mass around 15 M
o˙ consistent with recent measurements. Src I, the star with the smallest proper motion, is suspected to be either an astronomical-unit-scale binary or a protostellar merger remnant produced by a dynamic interaction ∼550 yr ago. Near-infrared 2.2 μm images spanning ∼21 yr confirm the ∼55 km s
-1 motion of "source x" (Src x) away from the site of stellar ejection and point of origin of the explosive OMC1 protostellar outflow. The radial velocities and masses of the Becklin-Neugebauer (BN) object and Src I constrain the radial velocity of Src x to be. Several high proper-motion radio sources near BN, including Zapata 11 ([ZRK2004] 11) and a diffuse source near IRc 23, may trace a slow bipolar outflow from BN. The massive disk around Src I is likely the surviving portion of a disk that existed prior to the stellar ejection. Though highly perturbed, shocked, and reoriented by the N-body interaction, enough time has elapsed to allow the disk to relax with its spin axis roughly orthogonal to the proper motion.
AB - The proper motions of the three stars ejected from Orion's OMC1 cloud core are combined with the requirement that their center of mass is gravitationally bound to OMC1 to show that radio source I (Src I) is likely to have a mass around 15 M
o˙ consistent with recent measurements. Src I, the star with the smallest proper motion, is suspected to be either an astronomical-unit-scale binary or a protostellar merger remnant produced by a dynamic interaction ∼550 yr ago. Near-infrared 2.2 μm images spanning ∼21 yr confirm the ∼55 km s
-1 motion of "source x" (Src x) away from the site of stellar ejection and point of origin of the explosive OMC1 protostellar outflow. The radial velocities and masses of the Becklin-Neugebauer (BN) object and Src I constrain the radial velocity of Src x to be. Several high proper-motion radio sources near BN, including Zapata 11 ([ZRK2004] 11) and a diffuse source near IRc 23, may trace a slow bipolar outflow from BN. The massive disk around Src I is likely the surviving portion of a disk that existed prior to the stellar ejection. Though highly perturbed, shocked, and reoriented by the N-body interaction, enough time has elapsed to allow the disk to relax with its spin axis roughly orthogonal to the proper motion.
UR - http://www.scopus.com/inward/record.url?scp=85081388710&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab65f2
DO - 10.3847/1538-4357/ab65f2
M3 - Article
SN - 0004-637X
VL - 889
JO - The Astrophysical Journal
JF - The Astrophysical Journal
IS - 2
M1 - 178
ER -