Abstract
High-velocity outflows are ubiquitous in compact, massive (M * ∼ 1011 M ⊙), z ∼ 0.5 galaxies with extreme star formation surface densities (ΣSFR ∼ 2000 M ⊙ yr−1 kpc−2). We have previously detected and characterized these outflows using Mg ii absorption lines. To probe their full extent, we present Keck/KCWI integral field spectroscopy of the [O ii] and Mg ii emission nebulae surrounding all of the 12 galaxies in this study. We find that [O ii] is more effective than Mg ii in tracing low surface brightness, extended emission in these galaxies. The [O ii] nebulae are spatially extended beyond the stars, with radial extent R 90 between 10 and 40 kpc. The nebulae exhibit nongravitational motions, indicating galactic outflows with maximum blueshifted velocities ranging from −335 to −1920 km s−1. The outflow kinematics correlate with the bursty star formation histories of these galaxies. Galaxies with the most recent bursts of star formation (within the last
Original language | English |
---|---|
Article number | 263 |
Pages (from-to) | 1-29 |
Number of pages | 29 |
Journal | The Astrophysical Journal |
Volume | 975 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Nov 2024 |
Keywords
- Stellar feedback
- Starburst galaxies
- Galactic winds
- Circumgalactic medium