Abstract
This study used a damaged skin, porcine model to evaluate the in vivo efficacy of WoundStat™ for the decontamination of superficial, nerve agent-contaminated wounds. Anaesthetized animals were randomly assigned to either control (n = 7), no decontamination (n = 12) or WoundStat™ (n = 12) treatment groups. Pigs were exposed to a 5× LD50 dose of neat, radiolabelled S-[2-(diisopropylamino)ethyl]-O-ethyl methyl-phosphonothioate (VX; or equivalent volume of sterile saline for the control group) via an area of superficially damaged skin on the ear. WoundStat™ was applied at 30 seconds post-exposure to assigned animals. The VX contaminant (or saline) and decontaminant remained in place for the duration of the study (up to 6 hours). Physiological parameters and signs of intoxication were recorded during the exposure period. Skin and organ samples were taken post mortem for 14C–VX distribution analyses. Blood samples were taken periodically for toxicokinetic and whole-blood acetylcholinesterase (AChE) activity analyses. VX exposure was accompanied by a rapid decrease in AChE activity in all animals, regardless of decontamination. However, decontamination significantly improved survival rate and time and reduced the severity of signs of intoxication. In addition, the distribution of 14C–VX in key internal organs and post mortem blood samples was significantly lower in the WoundStat™ treatment group. This study demonstrates that WoundStat™ may be a suitable medical countermeasure for increasing both survival rate and time following VX exposure. The results also suggest that AChE activity is not a useful prognostic indicator.
Original language | English |
---|---|
Pages (from-to) | 318-328 |
Number of pages | 11 |
Journal | Journal of Applied Toxicology |
Volume | 38 |
Issue number | 3 |
Early online date | 10 Oct 2017 |
DOIs | |
Publication status | Published - 1 Mar 2018 |
Keywords
- acetylcholinesterase
- coagulation
- haemorrhage
- haemostasis
- nerve agent
- organophosphate
- percutaneous absorption
- S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate
- splenic contraction