Three-Dimensional Pharmacophore Design and Biological Screening Identifies Substituted 1,2,4-Triazole Compounds as Inhibitors of the Annexin A2-S100A10 Protein Interaction.

Tummala R.K. Reddy, Chan Li, Peter Fischer, Lodewijk Dekker

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Protein interactions are increasingly appreciated as targets in small-molecule drug discovery. The interaction between the adapter protein S100A10 and its binding partner annexin A2 is a potentially important drug target. To obtain small-molecule starting points for inhibitors of this interaction, a three-dimensional pharmacophore model was constructed from the X-ray
crystal structure of the complex between S100A10 and annexin A2. The pharmacophore model represents the favourable hydrophobic and hydrogen bond interactions between the two partners, as well as spatial and receptor site constraints (excluded volume spheres). Using this pharmacophore
model, UNITY flex searches were carried out on a 3D library of 0.7 million commercially available compounds. This resulted in 568 hit compounds. Subsequently, GOLD docking studies were performed on these hits, and a set of 190 compounds were purchased and tested biochemically for inhibition of the protein interaction. Three compounds of similar chemical structure
were identified as genuine inhibitors of the binding of annexin A2 to S100A10. The binding modes predicted by GOLD were in good agreement with their UNITY-generated conformations. We synthesised a series of analogues revealing areas critical for binding. Thus computational predictions and biochemical screening can be used successfully to derive novel chemical
classes of protein–protein interaction blockers
Original languageEnglish
Pages (from-to)1435-1446
JournalChemMedChem
Volume7
Issue number8
DOIs
Publication statusPublished - 2012

Fingerprint

Dive into the research topics of 'Three-Dimensional Pharmacophore Design and Biological Screening Identifies Substituted 1,2,4-Triazole Compounds as Inhibitors of the Annexin A2-S100A10 Protein Interaction.'. Together they form a unique fingerprint.

Cite this