Abstract
To every directed graph $E$ one can associate a \emph{graph inverse semigroup} $G(E)$, where elements roughly correspond to possible paths in $E$. These semigroups generalize polycylic monoids, and they arise in the study of Leavitt path algebras, Cohn path algebras, Cuntz-Krieger $C^*$-algebras, and Toeplitz $C^*$-algebras. We investigate topologies that turn $G(E)$ into a topological semigroup. For instance, we show that in any such topology that is Hausdorff, $G(E)\setminus \{0\}$ must be discrete for any directed graph $E$. On the other hand, $G(E)$ need not be discrete in a Hausdorff semigroup topology, and for certain graphs $E$, $G(E)$ admits a $T_1$ semigroup topology in which $G(E)\setminus \{0\}$ is not discrete. We also describe, in various situations, the algebraic structure and possible cardinality of the closure of $G(E)$ in larger topological semigroups.
Original language | English |
---|---|
Pages (from-to) | 106-126 |
Number of pages | 21 |
Journal | Topology and its Applications |
Volume | 208 |
Early online date | 24 May 2016 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Keywords
- Topological Algebra
- SEMIGROUPS
- Abstract Algebra