Topology and Wilson lines: global aspects of the double copy

Luigi Alfonsi, Chris D. White, Sam Wikeley

Research output: Contribution to journalArticlepeer-review

36 Downloads (Pure)


The Kerr-Schild double copy relates exact solutions of gauge and gravity theories. In all previous examples, the gravity solution is associated with an abelian-like gauge theory object, which linearises the Yang-Mills equations. This appears to be at odds with the double copy for scattering amplitudes, in which the non-abelian nature of the gauge theory plays a crucial role. Furthermore, it is not yet clear whether or not global properties of classical fields - such as non-trivial topology - can be matched between gauge and gravity theories. In this paper, we clarify these issues by explicitly demonstrating how magnetic monopoles associated with arbitrary gauge groups can be double copied to the same solution (the pure NUT metric) in gravity. We further describe how to match up topological information on both sides of the double copy correspondence, independently of the nature of the gauge group. This information is neatly expressed in terms of Wilson line operators, and we argue through specific examples that they provide a useful bridge between the classical double copy and the BCJ double copy for scattering amplitudes.
Original languageEnglish
Article number91
Number of pages32
JournalJournal of High Energy Physics (JHEP)
Publication statusPublished - 14 Jul 2020


  • hep-th
  • gr-qc


Dive into the research topics of 'Topology and Wilson lines: global aspects of the double copy'. Together they form a unique fingerprint.

Cite this