Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations

Jason H. Steffen, Daniel C. Fabrycky, Eric B. Ford, Joshua A. Carter, Jean-Michel Desert, Francois Fressin, Matthew J. Holman, Jack J. Lissauer, Althea V. Moorhead, Jason F. Rowe, Darin Ragozzine, William F. Welsh, Natalie M. Batalha, William J. Borucki, Lars A. Buchhave, Steve Bryson, Douglas A. Caldwell, David Charbonneau, David R. Ciardi, William D. CochranMichael Endl, Mark E. Everett, Thomas N. Gautier, Ron L. Gilliland, Forrest R. Girouard, Jon M. Jenkins, Elliott Horch, Steve B. Howell, Howard Isaacson, Todd C. Klaus, David G. Koch, David W. Latham, Jie Li, P.W. Lucas, Phillip J. MacQueen, Geoffrey W. Marcy, Sean McCauliff, Christopher K. Middour, Robert L. Morris, Fergal R. Mullally, Samuel N. Quinn, Elisa V. Quintana, Avi Shporer, Martin Still, Peter Tenenbaum, Susan E. Thompson, Joseph D. Twicken, Jeffery Van Cleve

Research output: Contribution to journalArticlepeer-review

109 Citations (Scopus)
75 Downloads (Pure)

Abstract

We present a method to confirm the planetary nature of objects in systems with multiple transiting exoplanet candidates. This method involves a Fourier-domain analysis of the deviations in the transit times from a constant period that result from dynamical interactions within the system. The combination of observed anticorrelations in the transit times and mass constraints from dynamical stability allow us to claim the discovery of four planetary systems, Kepler-25, Kepler-26, Kepler-27 and Kepler-28, containing eight planets and one additional planet candidate.

Original languageEnglish
Pages (from-to)2342-2354
Number of pages13
JournalMonthly Notices of the Royal Astronomical Society
Volume421
Issue number3
Early online date22 Feb 2012
DOIs
Publication statusPublished - Apr 2012

Fingerprint

Dive into the research topics of 'Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations'. Together they form a unique fingerprint.

Cite this