TY - JOUR
T1 - Translational potential of a mouse in-vitro bioassay in predicting gastrointestinal adverse drug reactions in phase 1 clinical trials
AU - Keating, Christopher
AU - Ewart, Lorna
AU - Grundy, Luke
AU - Valentin, Jean-Pierre
AU - Grundy, David
N1 - This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited
PY - 2014/7
Y1 - 2014/7
N2 - Background: Motility-related gastrointestinal adverse drug reactions (GADRs) such as diarrhoea and constipation are a common and deleterious feature associated with drug development. Novel biomarkers of GI function are therefore required to aid decision making on the gastrointestinal liability of compounds in development.
Methods: Fifteen compounds associated with or without clinical GADRs were used to assess the ability of an in vitro colonic motility bioassay to predict motility-related GADRs. Compounds were examined in a blinded fashion for their effects on mouse colonic peristaltic motor complexes in vitro. For each compound concentration-response relationships were determined and the results compared to clinical data. Compounds were also assessed using gastrointestinal transit measurements obtained using an in vivo rat charcoal meal model.
Key Results: Within a clinically relevant dosing range, the in vitro assay identified 5 true and 3 false positives, 4 true and 3 false negatives, which gave a predictive capacity of 60%. The in vivo assay detected 4 true and 4 false positives, 4 false and 3 true negatives, giving rise to a predictive capacity for this model of 47%.
Conclusion & Inferences: Overall these results imply that both assays are poor predictors of GADRs. Further analysis would benefit from a larger compound set, but the data shows a clear need for improved models for use in safety pharmacology assessment of GI motility
AB - Background: Motility-related gastrointestinal adverse drug reactions (GADRs) such as diarrhoea and constipation are a common and deleterious feature associated with drug development. Novel biomarkers of GI function are therefore required to aid decision making on the gastrointestinal liability of compounds in development.
Methods: Fifteen compounds associated with or without clinical GADRs were used to assess the ability of an in vitro colonic motility bioassay to predict motility-related GADRs. Compounds were examined in a blinded fashion for their effects on mouse colonic peristaltic motor complexes in vitro. For each compound concentration-response relationships were determined and the results compared to clinical data. Compounds were also assessed using gastrointestinal transit measurements obtained using an in vivo rat charcoal meal model.
Key Results: Within a clinically relevant dosing range, the in vitro assay identified 5 true and 3 false positives, 4 true and 3 false negatives, which gave a predictive capacity of 60%. The in vivo assay detected 4 true and 4 false positives, 4 false and 3 true negatives, giving rise to a predictive capacity for this model of 47%.
Conclusion & Inferences: Overall these results imply that both assays are poor predictors of GADRs. Further analysis would benefit from a larger compound set, but the data shows a clear need for improved models for use in safety pharmacology assessment of GI motility
U2 - 10.1111/nmo.12349
DO - 10.1111/nmo.12349
M3 - Article
SN - 1365-2982
VL - 26
SP - 980
EP - 989
JO - Neurogastroenterology and Motility
JF - Neurogastroenterology and Motility
IS - 7
ER -