Universal sequences for the order-automorphisms of the rationals

James Hyde, Julius Jonusas, J. D. Mitchell, Y. H. Peresse

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)
    218 Downloads (Pure)

    Abstract

    In this paper, we consider the group Aut$(\mathbb{Q}, \leq)$ of order-automorphisms of the rational numbers, proving a result analogous to a theorem of Galvin's for the symmetric group. In an announcement, Kh\'elif states that every countable subset of Aut$(\mathbb{Q}, \leq)$ is contained in an $N$-generated subgroup of Aut$(\mathbb{Q}, \leq)$ for some fixed $N\in\mathbb{N}$. We show that the least such $N$ is $2$. Moreover, for every countable subset of Aut$(\mathbb{Q}, \leq)$, we show that every element can be given as a prescribed product of two generators without using their inverses. More precisely, suppose that $a$ and $b$ freely generate the free semigroup $\{a,b\}^+$ consisting of the non-empty words over $a$ and $b$. Then we show that there exists a sequence of words $w_1, w_2,\ldots$ over $\{a,b\}$ such that for every sequence $f_1, f_2, \ldots\in\,$Aut$(\mathbb{Q}, \leq)$ there is a homomorphism $\phi:\{a,b\}^{+}\to$ Aut$(\mathbb{Q},\leq)$ where $(w_i)\phi=f_i$ for every $i$. As a corollary to the main theorem in this paper, we obtain a result of Droste and Holland showing that the strong cofinality of Aut$(\mathbb{Q}, \leq)$ is uncountable, or equivalently that Aut$(\mathbb{Q}, \leq)$ has uncountable cofinality and Bergman's property.
    Original languageEnglish
    JournalJournal of the London Mathematical Society
    DOIs
    Publication statusPublished - 13 May 2016

    Keywords

    • Group Theory
    • Infinite Combinatorics

    Fingerprint

    Dive into the research topics of 'Universal sequences for the order-automorphisms of the rationals'. Together they form a unique fingerprint.

    Cite this