Abstract
Flooding's impact on transportation infrastructure is crucial, influencing urban mobility, economic activities, and societal resilience [1]. Disruptions in transportation networks during flood events significantly impede access to essential services, intensifying the vulnerability of communities and hindering recovery efforts. Understanding the multifaceted consequences of flooding on transportation is fundamental for fortifying these critical systems against the escalating risks posed by changing climate patterns and extreme weather events [2].
Floods, stemming from various sources like heavy rainfall, storm surges, or river overflow, profoundly affect transportation infrastructure. Bridges, roads, and rail networks face damage or complete destruction, impeding travel and access to crucial services. Moreover, inundated areas and compromised roadways exacerbate accessibility challenges for specific demographic groups [3]. Vulnerable communities, including low-income populations or geographically isolated areas, bear a disproportionate burden, experiencing limited access to jobs, healthcare, and emergency services during and after flood events.
Research exploring the nexus between early warning systems and transportation resilience remains sparse but holds significant promise. Early warnings tailored to transportation vulnerabilities could mitigate disruptions, enhancing evacuation plans and rerouting strategies. Enabling timely and targeted information dissemination to affected areas or populations, especially those with limited mobility or access, can substantially reduce the adverse impacts on their daily lives and crucial infrastructure. Understanding the gaps in the interconnection of early warning systems and transportation resilience is crucial for bolstering the adaptive capacity of transportation networks, ensuring equitable access, and minimizing the disproportionate impacts of floods on vulnerable communities.
Floods, stemming from various sources like heavy rainfall, storm surges, or river overflow, profoundly affect transportation infrastructure. Bridges, roads, and rail networks face damage or complete destruction, impeding travel and access to crucial services. Moreover, inundated areas and compromised roadways exacerbate accessibility challenges for specific demographic groups [3]. Vulnerable communities, including low-income populations or geographically isolated areas, bear a disproportionate burden, experiencing limited access to jobs, healthcare, and emergency services during and after flood events.
Research exploring the nexus between early warning systems and transportation resilience remains sparse but holds significant promise. Early warnings tailored to transportation vulnerabilities could mitigate disruptions, enhancing evacuation plans and rerouting strategies. Enabling timely and targeted information dissemination to affected areas or populations, especially those with limited mobility or access, can substantially reduce the adverse impacts on their daily lives and crucial infrastructure. Understanding the gaps in the interconnection of early warning systems and transportation resilience is crucial for bolstering the adaptive capacity of transportation networks, ensuring equitable access, and minimizing the disproportionate impacts of floods on vulnerable communities.
Original language | English |
---|---|
Number of pages | 2 |
DOIs | |
Publication status | Published - 19 Apr 2024 |
Event | European Geosciences Union General Assembly 24 - Austria Center Vienna (ACV), Vienna, Austria Duration: 14 Apr 2024 → 19 Apr 2024 https://www.egu24.eu/attend/venue.html |
Conference
Conference | European Geosciences Union General Assembly 24 |
---|---|
Abbreviated title | EGU General Assembly 2024 |
Country/Territory | Austria |
City | Vienna |
Period | 14/04/24 → 19/04/24 |
Internet address |