Abstract
Given a vertex Lie algebra $\mathscr L$ equipped with an action by automorphisms of a cyclic group $\Gamma$, we define spaces of cyclotomic coinvariants over the Riemann sphere. These are quotients of tensor products of smooth modules over `local' Lie algebras $\mathsf L(\mathscr L)_{z_i}$ assigned to marked points $z_i$, by the action of a `global' Lie algebra ${\mathsf L}^{\Gamma}_{\{z_i \}}(\mathscr L)$ of $\Gamma$-equivariant functions. On the other hand, the universal enveloping vertex algebra $\mathbb V (\mathscr L)$ of $\mathscr L$ is itself a vertex Lie algebra with an induced action of $\Gamma$. This gives `big' analogs of the Lie algebras above. From these we construct the space of `big' cyclotomic coinvariants, i.e. coinvariants with respect to ${\mathsf L}^{\Gamma}_{\{z_i \}}(\mathbb V(\mathscr L))$. We prove that these two definitions of cyclotomic coinvariants in fact coincide, provided the origin is included as a marked point. As a corollary we prove a result on the functoriality of cyclotomic coinvariants which we require for the solution of cyclotomic Gaudin models in arXiv:1409.6937. At the origin, which is fixed by $\Gamma$, one must assign a module over the stable subalgebra $\mathsf L(\mathscr L)^{\Gamma}$ of $\mathsf L(\mathscr L)$. This module becomes a $\mathbb V(\mathscr L)$-quasi-module in the sense of Li. As a bi-product we obtain an iterate formula for such quasi-modules.
Original language | English |
---|---|
Number of pages | 62 |
Journal | Communications in Contemporary Mathematics |
Volume | 19 |
Issue number | 2 |
DOIs | |
Publication status | Published - 30 Mar 2016 |
Keywords
- math.QA
- vertex algebras
- vertex Lie algebras
- cyclotomic coinvariants
- infinite dimensional Lie algebras