WEAVE First Light observations: Origin and Dynamics of the Shock Front in Stephan’s Quintet

Marina Arnaudova, Soumyadeep Das, Daniel Smith, Martin Hardcastle, Nina Hatch, Scott C. Trager, R.J. Smith, Alyssa Drake, James McGarry, Shravya Shenoy, John P. Stott, J. H. Knapen, K. M. Hess, Kenneth J. Duncan, A. J. Gloudemans, P.N. Best, R García-Benito, R. Kondapally, M. Balcells, G. S. CoutoD.C. Abrams, David S. Aguado, J. Alfonso L. Aguerri, R. Barrena, C. R. Benn, T. Bensby, S. R. Berlanas, D. Bettoni, D. Cano-Infantes, R. Carrera, P. J. Concepción, Gavin B. Dalton, G. G. D’Ago, K. Dee, Lilian Domínguez-Palmero, Janet Drew, E. L. Escott, C. Fariña, Matteo Fossati, M. Fumagalli, E. Gafton, F. J. Gribbin, S. Hughes, Angela Iovino, Shoko Jin, I.J. Lewis, M. Longhetti, J. Mendez-Abreu, A. Mercurio, A. Molaeinezhad, E. Molinari, M. Monguió, D. N. A. Murphy, S. Picó, Matthew M. Pieri, A. W. Ridings, M. Romero-Gómez, E. Schallig, Timothy W. Shimwell, R. Skvarc, R. Stuik, A. Vallenari, J.M. van der Hulst, N.A. Walton, C. C. Worley

Research output: Contribution to journalArticlepeer-review

Abstract

We present a detailed study of the large-scale shock front in Stephan’s Quintet, a by-product of past and ongoing interactions. Using integral-field spectroscopy from the new William Herschel Telescope Enhanced Area Velocity Explorer (WEAVE), recent 144 MHz observations from the LOFAR Two-metre Sky Survey, and archi v al data from the Very Large Array and JWST , we obtain new measurements of key shock properties and determine its impact on the system. Harnessing the WEAVE large integral f ield unit’s field of view (90 × 78 arcsec 2 ), spectral resolution ( R ∼ 2500), and continuous wavelength coverage across the optical band, we perform robust emission-line modelling and dynamically locate the shock within the multiphase intergalactic medium with higher precision than previously possible. The shocking of the cold gas phase is hypersonic, and comparisons with shock models show that it can readily account for the observed emission-line ratios. In contrast, we demonstrate that the shock is relatively weak in the hot plasma visible in X-rays (with Mach number of M ∼ 2 –4), making it inefficient at producing the relativistic particles needed to explain the observed synchrotron emission. Instead, we propose that it has led to an adiabatic compression of the medium, which has increased the radio luminosity 10-fold. Comparison of the Balmer line-derived extinction map with the molecular gas and hot dust observed with JWST suggests that pre-existing dust may have survived the collision, allowing the condensation of H 2 –a key channel for dissipating the shock energy.
Original languageEnglish
Article numberstae2235
Pages (from-to)2269–2290
Number of pages22
JournalMonthly Notices of the Royal Astronomical Society
Volume535
Issue number9
Early online date22 Nov 2024
DOIs
Publication statusE-pub ahead of print - 22 Nov 2024

Keywords

  • astro-ph.GA
  • galaxies: groups
  • : individual: Stephan’s Quintet
  • radio continuum: ISM
  • techniques: imaging spectroscopy

Fingerprint

Dive into the research topics of 'WEAVE First Light observations: Origin and Dynamics of the Shock Front in Stephan’s Quintet'. Together they form a unique fingerprint.

Cite this