Abstract
Despite the importance attached to the weights or strengths on the edges of a graph, a graph is only complete if it has both the combinations of nodes and edges. As such, this paper brings to bare the fact that the node-weight of a graph is also a critical factor to consider in any graph/network’s
evaluation, rather than the link-weight alone as commonly considered. In fact, the combination of the weights on both the nodes and edges as well as the number of ties together contribute effectively to the measure of centrality for an entire graph or network, thereby clearly showing more information. Two
methods which take into consideration both the link-weights and node-weights of graphs (the Weighted Marking method of prediction of location and the Clique/Node-Weighted centrality measures) are considered, and the result from the case studies shows that the clique/node-weighted centrality measures give an accuracy of 18% more than the weighted marking method, in the
prediction of Distribution Centre location of the Supply Chain Management
evaluation, rather than the link-weight alone as commonly considered. In fact, the combination of the weights on both the nodes and edges as well as the number of ties together contribute effectively to the measure of centrality for an entire graph or network, thereby clearly showing more information. Two
methods which take into consideration both the link-weights and node-weights of graphs (the Weighted Marking method of prediction of location and the Clique/Node-Weighted centrality measures) are considered, and the result from the case studies shows that the clique/node-weighted centrality measures give an accuracy of 18% more than the weighted marking method, in the
prediction of Distribution Centre location of the Supply Chain Management
Original language | English |
---|---|
Article number | 12 |
Pages (from-to) | 120-128 |
Number of pages | 9 |
Journal | International Journal of Advanced Computer Science and Applications |
Volume | 5 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- centrality measures
- graph
- network
- clique