University of Hertfordshire

By the same authors

An Initial Memory Model for Virtual and Robot Companions Supporting Migration and Long-term Interaction

Research output: Chapter in Book/Report/Conference proceedingConference contribution


View graph of relations
Original languageEnglish
Title of host publicationProcs of the 18th IEEE Int Symposium on Robot and Human Interactive Communication, RO-MAN
ISBN (Print)978-1-4244-5081-7
Publication statusPublished - 2009
Event18th IEEE Int Symposium on Robot & Human Interactive Communication - Toyama, Japan
Duration: 27 Sep 20092 Oct 2009


Conference18th IEEE Int Symposium on Robot & Human Interactive Communication


This work proposes an initial memory model for a long-term artificial companion, which migrates among virtual and robot platforms based on the context of interactions with the human user. This memory model enables the companion to remember events that are relevant or significant to itself or to the user. For other events which are either ethically sensitive or with a lower long-term value, the memory model supports forgetting through the processes of generalisation and memory restructuring. The proposed memory model draws inspiration from the human short-term and long-term memories. The short-term memory will support companions in focusing on the stimuli that are relevant to their current active goals within the environment. The long-term memory will contain episodic events that are chronologically sequenced and derived from the companion's interaction history both with the environment and the user. There are two key questions that we try to address in this work: 1) What information should the companion remember in order to generate appropriate behaviours and thus smooth the interaction with the user? And, 2) What are the relevant aspects to take into consideration during the design of memory for a companion that can have different types of virtual and physical bodies? Finally, we show an implementation plan of the memory model, focusing on issues of information grounding, activation and sensing based on specific hardware platforms.


“This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.” DOI: 10.1109/ROMAN.2009.5326204

ID: 429772