University of Hertfordshire

From the same journal

By the same authors

Documents

View graph of relations
Original languageEnglish
Article number1849
Number of pages18
JournalElectronics
Volume10
Issue15
DOIs
Publication statusPublished - 31 Jul 2021

Abstract

Threat assessment is the continuous process of monitoring the threats identified in the network of the real-time informational environment of an organisation and the business of the companies. The sagacity and security assurance for the system of an organisation and company’s business seem to need that information security exercise to unambiguously and effectively handle the threat agent’s attacks. How is this unambiguous and effective way in the present-day state of information security practice working? Given the prevalence of threats in the modern information environment, it is essential to guarantee the security of national information infrastructure. However, the existing models and methodology are not addressing the attributes of threats like motivation, opportunity, and capability (C, M, O), and the critical threat intelligence (CTI) feed to the threat agents during the penetration process is ineffective, due to which security assurance arises for an organisation and the business of companies. This paper proposes a semi-automatic information security model, which can deal with situational awareness data, strategies prevailing information security activities, and protocols monitoring specific types of the network next to the real-time information environment. This paper looks over analyses and implements the threat assessment of network traffic in one particular real-time informational environment. To achieve this, we determined various unique attributes of threat agents from the Packet Capture Application Programming Interface (PCAP files/DataStream) collected from the network between the years 2012 and 2019.

Notes

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)

ID: 25753644