University of Hertfordshire

Documents

View graph of relations
Original languageEnglish
Pages (from-to)26-34
Number of pages9
JournalJournal of Manufacturing Processes
Volume52
Early online date31 Jan 2020
DOIs
Publication statusPublished - Apr 2020

Abstract

Ultrasonic Testing (UT) is one of the well-known Non-Destructive Techniques (NDT) of spot-weld inspection in the advanced industries, especially in automotive industry. However, the relationship between the UT results and strength of the spot-welded joints subjected to various loading conditions isunknown. The main purpose of this research is to present an integrated search system as a new approach for assessment of tensile strength and fatigue behavior of the spot-welded joints. To this end, Resistance Spot Weld (RSW) specimens of three-sheets were made of different types of low carbon steel. Afterward, the ultrasonic tests were carried out and the pulse-echo data of each sample were extracted utilizing Image Processing Technique (IPT). Several experiments (tensile and axial fatigue tests) were performed to study the mechanical properties of RSW joints of multiple sheets. The novel approach of the present research is to provide a new methodology for static strength and fatigue life assessment of three-sheets RSW joints based on the UT results by utilizing Artificial Neural Network (ANN) simulation. Next, Genetic Algorithm (GA) was used to optimize the structure of ANN. This approach helps to decrease the number of tests and the cost of performing destructive tests with appropriate reliability.

Notes

© 2020 The Society of Manufacturing Engineers. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/

ID: 19317026