University of Hertfordshire

From the same journal

By the same authors

Documents

  • 906506

    Final published version, 400 KB, PDF document

View graph of relations
Original languageEnglish
Article number39
Number of pages7
JournalArchives of Physical Medicine and Rehabilitation
Volume11
DOIs
Publication statusPublished - 1 Mar 2010

Abstract

Abstract. Background. Clinical sagittal plane assessment of the thoracic kyphosis angle is considered an essential component of the postural examination of patients presenting with upper body pain syndromes. Cervical headaches and conditions involving the shoulder, such as subacromial pain syndrome, have all been associated with an increase in the thoracic kyphosis. Concomitantly a decrease in the thoracic kyphosis as a result of a stretching and strengthening rehabilitation programme is believed to be associated with a reduction in symptoms and pain and improvement in function. Clinicians generally measure the sagittal plane kyphosis angle visually. There is no certainty that this method is reliable or is capable of measuring angular changes over time or in response to intervention. As such a simple and reliable clinical method of measuring the thoracic kyphosis would enable clinicians to record this information. The aim of this investigation was to determine the intra-tester reliability of measuring the thoracic kyphosis angle using a clinical method. Methods. Measurements were made in 45 subjects with and 45 subjects without upper body symptoms. Measurements were made with the subjects in relaxed standing. Two gravity dependent inclinometers were used to measure the kyphosis. The first was placed over the region of the 1 and 2 thoracic spinous processes. The other, over the region of the 12 thoracic and 1 lumbar spinous processes. The angle produced by each inclinometer was measured 3 times in succession. Each set of 3 measurements was made on two occasions (separated by a minimum of 30 minutes and additional data collection involving 46 further measurements of posture and movement on the same and an additional subject before the thoracic kyphosis measurements were re-measured) by one rater. The reliability of the measurements was analyzed using 2-way ANOVA intraclass correlation coefficients (ICC), 95% confidence intervals (CI) and standard error of measurement (SEM) for precision, for a single measurement [ICC(single)] and the average of 3 measures [ICC(average)]. The assessor remained 'blinded' to data input and the measurements were staggered to reduce examiner bias. Results. The measurement of the thoracic kyphosis as used in this investigation was found to have excellent intra-rater reliability for both subjects with and without symptoms. The ICC(single) results for the subjects without symptoms were, .95; (95% CI .91-.97). The corresponding ICC(average) results were; .97; (95% CI .95-.99). The results for the subjects with symptoms were; 93; (95% CI .88-.96), for ICC(single) and for ICC(average); .97; (95% CI .94-.98). The SEM results for subjects without and with symptoms were 1.0° and 1.7°, respectively. Conclusions. The findings of this immediate test-retest reliability study suggest that the clinical measurement of the thoracic kyphosis using gravity dependent inclinometers demonstrates excellent intra-rater reliability. Additional research is required to determine the inter-rater reliability of this method. Trial registration. National Research Register: N0060148286.

Notes

Copyright © Lewis and Valentine; licensee BioMed Central Ltd. 2010. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ID: 1744144