University of Hertfordshire

From the same journal

From the same journal



  • Yuxin Lin
  • Hauyu Baobab Liu
  • James E. Dale
  • D. Li
  • Gemma Busquet
  • Zhi Yu Zhang
  • Adam Ginsburg
  • Roberto Galván-Madrid
  • Attila Kovács
  • Eric Koch
  • Lei Qian
  • Ke Wang
  • Steve Longmore
  • Huei Ru Chen
  • Daniel Walker
View graph of relations
Original languageEnglish
Article number22
Number of pages14
JournalThe Astrophysical Journal
Publication statusPublished - 2 May 2017


We have modified the iterative procedure introduced by Lin et al., to systematically combine the submillimeter images taken from ground-based (e.g., CSO, JCMT, APEX) and space (e.g., Herschel, Planck) telescopes. We applied the updated procedure to observations of three well-studied Infrared Dark Clouds (IRDCs): G11.11-0.12, G14.225-0.506, and G28.34+0.06, and then performed single-component, modified blackbody fits to each pixel to derive ∼10″ resolution dust temperature and column density maps. The derived column density maps show that these three IRDCs exhibit complex filamentary structures embedded with rich clumps/cores. We compared the column density probability distribution functions (N-PDFs) and two-point correlation (2PT) functions of the column density field between these IRDCs with several OB-cluster-forming regions. Based on the observed correlation between the luminosity-to-mass ratio and the power-law index of the N-PDF, and complementary hydrodynamical simulations for a 104 molecular cloud, we hypothesize that cloud evolution can be better characterized by the evolution of the (column) density distribution function and the relative power of dense structures as a function of spatial scales, rather than merely based on the presence of star-forming activity. An important component of our approach is to provide a model-independent quantification of cloud evolution. Based on the small analyzed sample, we propose four evolutionary stages, namely, cloud integration, stellar assembly, cloud pre-dispersal, and dispersed cloud. The initial cloud integration stage and the final dispersed cloud stage may be distinguished from the two intermediate stages by a steeper than -4 power-law index of the N-PDF. The cloud integration stage and the subsequent stellar assembly stage are further distinguished from each other by the larger luminosity-to-mass ratio (>40 ) of the latter. A future large survey of molecular clouds with high angular resolution may establish more precise evolutionary tracks in the parameter space of N-PDF, 2PT function, and luminosity-to-mass ratio.


© 2017. The American Astronomical Society. All rights reserved.

ID: 12142333