University of Hertfordshire

From the same journal

By the same authors

Cluster Adjacency for m=2 Yangian Invariants

Research output: Contribution to journalArticle

Standard

Cluster Adjacency for m=2 Yangian Invariants. / Lukowski, Tomasz; Parisi, Matteo; Spradlin, Marcus; Volovich, Anastasia.

In: Journal of High Energy Physics, Vol. 2019, No. 10, 158, 14.10.2019.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

Lukowski, Tomasz ; Parisi, Matteo ; Spradlin, Marcus ; Volovich, Anastasia. / Cluster Adjacency for m=2 Yangian Invariants. In: Journal of High Energy Physics. 2019 ; Vol. 2019, No. 10.

Bibtex

@article{754a9ba0cabe431ea7c9c8c5b0a6d16d,
title = "Cluster Adjacency for m=2 Yangian Invariants",
abstract = " We classify the rational Yangian invariants of the $m=2$ toy model of $\mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $\mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra. ",
keywords = "hep-th, Scattering Amplitudes, Supersymmetric Gauge Theory",
author = "Tomasz Lukowski and Matteo Parisi and Marcus Spradlin and Anastasia Volovich",
note = "11 pages, 3 figures",
year = "2019",
month = oct,
day = "14",
doi = "10.1007/JHEP10(2019)158",
language = "English",
volume = "2019",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "10",

}

RIS

TY - JOUR

T1 - Cluster Adjacency for m=2 Yangian Invariants

AU - Lukowski, Tomasz

AU - Parisi, Matteo

AU - Spradlin, Marcus

AU - Volovich, Anastasia

N1 - 11 pages, 3 figures

PY - 2019/10/14

Y1 - 2019/10/14

N2 - We classify the rational Yangian invariants of the $m=2$ toy model of $\mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $\mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.

AB - We classify the rational Yangian invariants of the $m=2$ toy model of $\mathcal{N}=4$ Yang-Mills theory in terms of generalised triangles inside the amplituhedron $\mathcal{A}_{n,k}^{(2)}$. We enumerate and provide an explicit formula for all invariants for any number of particles $n$ and any helicity degree $k$. Each invariant manifestly satisfies cluster adjacency with respect to the $Gr(2,n)$ cluster algebra.

KW - hep-th

KW - Scattering Amplitudes

KW - Supersymmetric Gauge Theory

UR - http://www.scopus.com/inward/record.url?scp=85073671125&partnerID=8YFLogxK

U2 - 10.1007/JHEP10(2019)158

DO - 10.1007/JHEP10(2019)158

M3 - Article

VL - 2019

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 10

M1 - 158

ER -