University of Hertfordshire

Documents

  • 904990

    Final published version, 631 KB, PDF document

  • L.S. Harrington
  • R. Lucas
  • S.K. McMaster
  • L. Moreno
  • G. Scadding
  • J.A. Mitchell
  • T.D. Warner
View graph of relations
Original languageEnglish
Pages (from-to)4005-4010
Number of pages6
JournalFASEB Journal
Volume22
Issue11
DOIs
Publication statusPublished - 1 Nov 2008

Abstract

Cyclooxygenase (COX) -1 and COX-2 are expressed in airway cells, where their activities influence functions such as airway hyperreactivity. Clinical data show that mixed COX-1/COX-2 inhibitors such as aspirin, but not COX-2 selective inhibitors such as rofecoxib, induce bronchoconstriction and asthma in sensitive individuals. This anomaly has not yet been explained. Here, we have used tissue from genetically modified mice lacking functional COX-1 (COX-1 ), as well as airway tissue from "aspirin-sensitive" and control patients to address this issue. Bronchi from wild-type mice contained predominantly COX-1 immunoreactivity and contracted in vitro in response to acetylcholine and U46619. Bronchi from COX-1 mice were hyperresponsive to bronchoconstrictors. Inhibitors of COX (naproxen, diclofenac, or ibuprofen) increased bronchoconstriction in tissue from wild-type but not from COX-1 mice. Cells cultured from aspirin-sensitive or control human donors contained similar levels of COX-1 and COX-2 immunoreactivity. COX activity in cells from aspirin-sensitive or tolerant patients was inhibited by aspirin, SC560, which blocks COX-1 selectively, but not by rofecoxib, which is a selective inhibitor of COX-2. These observations show that despite the presence of COX-2, COX-1 is functionally predominant in the airways and explains clinical observations relating to drug specificity in patients with aspirin-sensitive asthma.

Notes

MEDLINE® is the source for the MeSH terms of this document. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/us/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ID: 1744973