University of Hertfordshire

From the same journal

By the same authors

Cross-section measurement of the Ba 130 (p,γ) La 131 reaction for γ -process nucleosynthesis

Research output: Contribution to journalArticlepeer-review

Documents

  • 1409.7835v1

    Accepted author manuscript, 306 KB, PDF document

  • L. Netterdon
  • A. Endres
  • G. G. Kiss
  • J. Mayer
  • T. Rauscher
  • P. Scholz
  • K. Sonnabend
  • Zs Török
  • A. Zilges
View graph of relations
Original languageEnglish
Article number035806
JournalPhysical Review C
Volume90
Issue3
DOIs
Publication statusPublished - 25 Sep 2014

Abstract

Background: Deviations between experimental data of charged-particle-induced reactions and calculations within the statistical model are frequently found. An extended data base is needed to address the uncertainties regarding the nuclear-physics input parameters in order to understand the nucleosynthesis of the neutron-deficient p nuclei. Purpose: A measurement of total cross-section values of the Ba130(p,γ)La131 reaction at low proton energies allows a stringent test of statistical model predictions with different proton+nucleus optical model potentials. Since no experimental data are available for proton-capture reactions in this mass region around A ≈130, this measurement can be an important input to test the global applicability of proton+nucleus optical model potentials. Method: The total reaction cross-section values were measured by means of the activation method. After the irradiation with protons, the reaction yield was determined by use of γ-ray spectroscopy using two clover-type high-purity germanium detectors. In total, cross-section values for eight different proton energies could be determined in the energy range between 3.6 MeV ≤Ep≤ 5.0 MeV, thus, inside the astrophysically relevant energy region. Results: The measured cross-section values were compared to Hauser-Feshbach calculations using the statistical model codes TALYS and SMARAGD with different proton+nucleus optical model potentials. With the semimicroscopic JLM proton+nucleus optical model potential used in the SMARAGD code, the absolute cross-section values are reproduced well, but the energy dependence is too steep at the lowest energies. The best description is given by a TALYS calculation using the semimicroscopic Bauge proton+nucleus optical model potential using a constant renormalization factor. Conclusions: The statistical model calculation using the Bauge semimicroscopic proton+nucleus optical model potential deviates by a constant factor of 2.1 from the experimental data. Using this model, an experimentally supported stellar reaction rate for proton capture on the p nucleus Ba130 was calculated. At astrophysical temperatures, an increase in the stellar reaction rate of 68% compared to rates obtained from the widely used NON-SMOKER code is found. This measurement extends the scarce experimental data base for charged-particle-induced reactions, which can be helpful to derive a more globally applicable proton+nucleus optical model potential.

ID: 7686953