University of Hertfordshire

From the same journal

By the same authors

Standard

Detection and Analysis of Corrosion and Contact Resistance Faults of TiN and CrN Coatings on 410 Stainless Steel as Bipolar Plates in PEM Fuel Cells. / Forouzanmehr , Mohsen ; Kashyzadeh, Kazem Reza; Borjali, Amirhossein; Ivanov , Anastas; Gan , Tat-Hean ; Wang, Bin; Chizari, Mahmoud.

In: Sensors (Switzerland), Vol. 22, No. 3, 750, 19.01.2022.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Forouzanmehr , Mohsen ; Kashyzadeh, Kazem Reza ; Borjali, Amirhossein ; Ivanov , Anastas ; Gan , Tat-Hean ; Wang, Bin ; Chizari, Mahmoud. / Detection and Analysis of Corrosion and Contact Resistance Faults of TiN and CrN Coatings on 410 Stainless Steel as Bipolar Plates in PEM Fuel Cells. In: Sensors (Switzerland). 2022 ; Vol. 22, No. 3.

Bibtex

@article{65bd0e735c814801b859fb9454ea929f,
title = "Detection and Analysis of Corrosion and Contact Resistance Faults of TiN and CrN Coatings on 410 Stainless Steel as Bipolar Plates in PEM Fuel Cells",
abstract = "Bipolar Plates (BPPs) are the most crucial component of the Polymer Electrolyte Membrane (PEM) fuel cell system. To improve fuel cell stack performance and lifetime, corrosion resistance and Interfacial Contact Resistance (ICR) enhancement are two essential factors for metallic BPPs. One of the most effective methods to achieve this purpose is adding a thin solid film of conductive coating on the surfaces of these plates. In the present study, 410 Stainless Steel (SS) was selected as a metallic bipolar plate. The coating process was performed using titanium nitride and chromium nitride by the Cathodic Arc Evaporation (CAE) method. The main focus of this study was to select the best coating among CrN and TiN on the proposed alloy as a substrate of PEM fuel cells through the comparison technique with simultaneous consideration of corrosion resistance and ICR value. After verifying the TiN and CrN coating compound, the electrochemical assessment was conducted by the potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests. The results of PDP show that all coated samples have an increase in the polarization resistance (R_p) values (ranging from 410.2 to 690.6 〖Ω·cm〗^2) compared to substrate 410 SS (230.1 〖Ω·cm〗^2 ). Corrosion rate values for bare 410 SS, CrN, and TiN coatings were measured as 0.096, 0.032, and 0.060 mpy, respectively. Facilities for X-ray Diffraction (XRD), Scanning Electron Microscope (SEM ), and Energy Dispersive X-ray Spectroscopy (EDXS) were utilized to perform phase, corrosion behavior, and microstructure analysis. Furthermore, ICR tests were performed on both coated and uncoated specimens. However, the ICR of the coated samples increased slightly compared to uncoated samples. Finally, according to corrosion performance results and ICR values, it can be concluded that the CrN layer is a suitable choice for deposition on 410 SS with the aim of being used in a BPP fuel cell system.",
keywords = "Fuel cell, Corrosion, Coating, Interfacial Contact Resistance",
author = "Mohsen Forouzanmehr and Kashyzadeh, {Kazem Reza} and Amirhossein Borjali and Anastas Ivanov and Tat-Hean Gan and Bin Wang and Mahmoud Chizari",
note = "{\textcopyright} 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). ",
year = "2022",
month = jan,
day = "19",
doi = "10.3390/s22030750",
language = "English",
volume = "22",
journal = "Sensors",
issn = "1424-8220",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "3",

}

RIS

TY - JOUR

T1 - Detection and Analysis of Corrosion and Contact Resistance Faults of TiN and CrN Coatings on 410 Stainless Steel as Bipolar Plates in PEM Fuel Cells

AU - Forouzanmehr , Mohsen

AU - Kashyzadeh, Kazem Reza

AU - Borjali, Amirhossein

AU - Ivanov , Anastas

AU - Gan , Tat-Hean

AU - Wang, Bin

AU - Chizari, Mahmoud

N1 - © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

PY - 2022/1/19

Y1 - 2022/1/19

N2 - Bipolar Plates (BPPs) are the most crucial component of the Polymer Electrolyte Membrane (PEM) fuel cell system. To improve fuel cell stack performance and lifetime, corrosion resistance and Interfacial Contact Resistance (ICR) enhancement are two essential factors for metallic BPPs. One of the most effective methods to achieve this purpose is adding a thin solid film of conductive coating on the surfaces of these plates. In the present study, 410 Stainless Steel (SS) was selected as a metallic bipolar plate. The coating process was performed using titanium nitride and chromium nitride by the Cathodic Arc Evaporation (CAE) method. The main focus of this study was to select the best coating among CrN and TiN on the proposed alloy as a substrate of PEM fuel cells through the comparison technique with simultaneous consideration of corrosion resistance and ICR value. After verifying the TiN and CrN coating compound, the electrochemical assessment was conducted by the potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests. The results of PDP show that all coated samples have an increase in the polarization resistance (R_p) values (ranging from 410.2 to 690.6 〖Ω·cm〗^2) compared to substrate 410 SS (230.1 〖Ω·cm〗^2 ). Corrosion rate values for bare 410 SS, CrN, and TiN coatings were measured as 0.096, 0.032, and 0.060 mpy, respectively. Facilities for X-ray Diffraction (XRD), Scanning Electron Microscope (SEM ), and Energy Dispersive X-ray Spectroscopy (EDXS) were utilized to perform phase, corrosion behavior, and microstructure analysis. Furthermore, ICR tests were performed on both coated and uncoated specimens. However, the ICR of the coated samples increased slightly compared to uncoated samples. Finally, according to corrosion performance results and ICR values, it can be concluded that the CrN layer is a suitable choice for deposition on 410 SS with the aim of being used in a BPP fuel cell system.

AB - Bipolar Plates (BPPs) are the most crucial component of the Polymer Electrolyte Membrane (PEM) fuel cell system. To improve fuel cell stack performance and lifetime, corrosion resistance and Interfacial Contact Resistance (ICR) enhancement are two essential factors for metallic BPPs. One of the most effective methods to achieve this purpose is adding a thin solid film of conductive coating on the surfaces of these plates. In the present study, 410 Stainless Steel (SS) was selected as a metallic bipolar plate. The coating process was performed using titanium nitride and chromium nitride by the Cathodic Arc Evaporation (CAE) method. The main focus of this study was to select the best coating among CrN and TiN on the proposed alloy as a substrate of PEM fuel cells through the comparison technique with simultaneous consideration of corrosion resistance and ICR value. After verifying the TiN and CrN coating compound, the electrochemical assessment was conducted by the potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) tests. The results of PDP show that all coated samples have an increase in the polarization resistance (R_p) values (ranging from 410.2 to 690.6 〖Ω·cm〗^2) compared to substrate 410 SS (230.1 〖Ω·cm〗^2 ). Corrosion rate values for bare 410 SS, CrN, and TiN coatings were measured as 0.096, 0.032, and 0.060 mpy, respectively. Facilities for X-ray Diffraction (XRD), Scanning Electron Microscope (SEM ), and Energy Dispersive X-ray Spectroscopy (EDXS) were utilized to perform phase, corrosion behavior, and microstructure analysis. Furthermore, ICR tests were performed on both coated and uncoated specimens. However, the ICR of the coated samples increased slightly compared to uncoated samples. Finally, according to corrosion performance results and ICR values, it can be concluded that the CrN layer is a suitable choice for deposition on 410 SS with the aim of being used in a BPP fuel cell system.

KW - Fuel cell

KW - Corrosion

KW - Coating

KW - Interfacial Contact Resistance

U2 - 10.3390/s22030750

DO - 10.3390/s22030750

M3 - Article

VL - 22

JO - Sensors

JF - Sensors

SN - 1424-8220

IS - 3

M1 - 750

ER -