University of Hertfordshire

From the same journal

By the same authors

Deterministic equivalent performance analysis of time-varying massive MIMO systems

Research output: Contribution to journalArticlepeer-review


View graph of relations
Original languageEnglish
Article number7120183
Pages (from-to)5795-5809
Number of pages15
JournalIEEE Transactions on Wireless Communications
Early online date9 Jun 2015
Publication statusPublished - 1 Oct 2015


Delayed channel state information at the transmitter (CSIT) due to time variation of the channel, coming from the users' relative movement with regard to the BS antennas, is an inevitable degrading performance factor in practical systems. Despite its importance, little attention has been paid to the literature of multi-cellular multiple-input massive multiple-output (MIMO) system by investigating only the maximal ratio combining (MRC) receiver and the maximum ratio transmission (MRT) precoder. Hence, the contribution of this work is designated by the performance analysis/comparison of/with more sophisticated linear techniques, i.e., a minimum-mean-square-error (MMSE) detector for the uplink and a regularized zero-forcing (RZF) precoder for the downlink are assessed. In particular, we derive the deterministic equivalents of the signal-to-interference-plus-noise ratios (SINRs), which capture the effect of delayed CSIT, and make the use of lengthy Monte Carlo simulations unnecessary. Furthermore, prediction of the current CSIT after applying a Wiener filter allows to evaluate the mitigation capabilities of MMSE and RZF. Numerical results depict that the proposed achievable SINRs (MMSE/RZF) are more efficient than simpler solutions (MRC/MRT) in delayed CSIT conditions, and yield a higher prediction at no special computational cost due to their deterministic nature. Nevertheless, it is shown that massive MIMO are preferable even in time-varying channel conditions.


© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ID: 13265568