University of Hertfordshire

From the same journal

From the same journal

By the same authors

  • Bo Liu
  • Avice Hall
  • H J Wileman
  • Jolyon Dodgson
  • Euphemia Mutasa-Gottgens
View graph of relations
Original languageEnglish
Number of pages28
JournalPLoS ONE
Publication statusSubmitted - 16 Jul 2021

Abstract

Strawberry powdery mildew (Podosphaera aphanis) causes serious losses in UK crops, potentially reducing yields by as much as 70%. Consequently, conventional fungicide application programmes tend to recommend a prophylactic approach using insurance sprays, risking the development of fungicide insensitivity and requiring careful management relative to harvest periods to avoid residual fungicides on harvested fruit. This paper describes the development of a prediction system to guide the control of P. aphanis by the application of fungicides only when pathogen infection and disease progression are likely. The system was developed over a 15-year period on commercial farms starting with its establishment, validation and then deployment to strawberry growers. This involved three stages: 1. Identification and validation of parameters for inclusion in the prediction system (2004-2008). 2. Development of the prediction system in compact disc format (2009-2015). 3. Development and validation of the prediction system in a web-based format and cost-benefit analysis (2016-2020). The prediction system was based on the temporal accumulation of conditions (temperature and relative humidity) conducive to the development of P. aphanis, which sporulates at 144 accumulated disease-conducive hours. Sensitivity analysis was performed to refine the prediction system parameters. Field validation of the results demonstrated that to effectively control disease, the application of fungicides was best done between 125 and 144 accumulated hours of disease-conducive conditions. A cost-benefit analysis indicated that, by comparison with the number and timing of fungicide applications in conventional insurance disease control programmes, the prediction system enabled good disease control with significantly fewer fungicide applications (between one and four sprays less) (df=7, t=7.6, p=0.001) and reduced costs (savings between £35-£493/hectare) (df=7, t=4.0, p=0.01) for the growers.

Research outputs

ID: 25593118