University of Hertfordshire

From the same journal

From the same journal

Early evolution of embedded clusters

Research output: Contribution to journalArticlepeer-review

Standard

Early evolution of embedded clusters. / Ercolano, B.; Bonnell, I.~A.; Dale, James.

In: Monthly Notices of the Royal Astronomical Society, Vol. 451, No. 1, 21.07.2015, p. 987-1003.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Ercolano, B. ; Bonnell, I.~A. ; Dale, James. / Early evolution of embedded clusters. In: Monthly Notices of the Royal Astronomical Society. 2015 ; Vol. 451, No. 1. pp. 987-1003.

Bibtex

@article{ab15eacc20544f138b34e264932ba993,
title = "Early evolution of embedded clusters",
abstract = "We examine the combined effects of winds and photoionizing radiation from O-type stars on embedded stellar clusters formed in model turbulent molecular clouds covering a range of masses and radii. We find that feedback is able to increase the quantities of dense gas present, but decreases the rate and efficiency of the conversion of gas to stars relative to control simulations in which feedback is absent. Star formation in these calculations often proceeds at a rate substantially slower than the freefall rate in the dense gas. This decoupling is due to the weakening of, and expulsion of gas from, the deepest parts of the clouds{\textquoteright} potential wells where most of the star formation occurs in the control simulations. This results in large fractions of the stellar populations in the feedback simulation becoming dissociated from dense gas. However, where star formation does occur in both control and feedback simulations, it does so in dense gas, so the correlation between star formation activity and dense gas is preserved. The overall dynamical effects of feedback on the clusters are minimal, with only small fraction of stars becoming unbound, despite large quantities of gas being expelled from some clouds. This owes to the settling of the stars into virialized and stellar-dominated configurations before the onset of feedback. By contrast, the effects of feedback on the observable properties of the clusters – their U-, B- and V-band magnitudes – are strong and sudden. The time-scales on which the clusters become visible and unobscured are short compared with the time-scales which the clouds are actually destroyed.",
keywords = "stars: formation, ISM: bubbles, H II regions",
author = "B. Ercolano and I.~A. Bonnell and James Dale",
note = "This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. {\textcopyright} 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.",
year = "2015",
month = jul,
day = "21",
doi = "10.1093/mnras/stv913",
language = "English",
volume = "451",
pages = "987--1003",
journal = "Monthly Notices of the Royal Astronomical Society",
issn = "0035-8711",
publisher = "Oxford University Press",
number = "1",

}

RIS

TY - JOUR

T1 - Early evolution of embedded clusters

AU - Ercolano, B.

AU - Bonnell, I.~A.

AU - Dale, James

N1 - This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

PY - 2015/7/21

Y1 - 2015/7/21

N2 - We examine the combined effects of winds and photoionizing radiation from O-type stars on embedded stellar clusters formed in model turbulent molecular clouds covering a range of masses and radii. We find that feedback is able to increase the quantities of dense gas present, but decreases the rate and efficiency of the conversion of gas to stars relative to control simulations in which feedback is absent. Star formation in these calculations often proceeds at a rate substantially slower than the freefall rate in the dense gas. This decoupling is due to the weakening of, and expulsion of gas from, the deepest parts of the clouds’ potential wells where most of the star formation occurs in the control simulations. This results in large fractions of the stellar populations in the feedback simulation becoming dissociated from dense gas. However, where star formation does occur in both control and feedback simulations, it does so in dense gas, so the correlation between star formation activity and dense gas is preserved. The overall dynamical effects of feedback on the clusters are minimal, with only small fraction of stars becoming unbound, despite large quantities of gas being expelled from some clouds. This owes to the settling of the stars into virialized and stellar-dominated configurations before the onset of feedback. By contrast, the effects of feedback on the observable properties of the clusters – their U-, B- and V-band magnitudes – are strong and sudden. The time-scales on which the clusters become visible and unobscured are short compared with the time-scales which the clouds are actually destroyed.

AB - We examine the combined effects of winds and photoionizing radiation from O-type stars on embedded stellar clusters formed in model turbulent molecular clouds covering a range of masses and radii. We find that feedback is able to increase the quantities of dense gas present, but decreases the rate and efficiency of the conversion of gas to stars relative to control simulations in which feedback is absent. Star formation in these calculations often proceeds at a rate substantially slower than the freefall rate in the dense gas. This decoupling is due to the weakening of, and expulsion of gas from, the deepest parts of the clouds’ potential wells where most of the star formation occurs in the control simulations. This results in large fractions of the stellar populations in the feedback simulation becoming dissociated from dense gas. However, where star formation does occur in both control and feedback simulations, it does so in dense gas, so the correlation between star formation activity and dense gas is preserved. The overall dynamical effects of feedback on the clusters are minimal, with only small fraction of stars becoming unbound, despite large quantities of gas being expelled from some clouds. This owes to the settling of the stars into virialized and stellar-dominated configurations before the onset of feedback. By contrast, the effects of feedback on the observable properties of the clusters – their U-, B- and V-band magnitudes – are strong and sudden. The time-scales on which the clusters become visible and unobscured are short compared with the time-scales which the clouds are actually destroyed.

KW - stars: formation, ISM: bubbles, H II regions

U2 - 10.1093/mnras/stv913

DO - 10.1093/mnras/stv913

M3 - Article

VL - 451

SP - 987

EP - 1003

JO - Monthly Notices of the Royal Astronomical Society

JF - Monthly Notices of the Royal Astronomical Society

SN - 0035-8711

IS - 1

ER -